
GEORGIA INSTITUTE OF TECHNOLOGY

SCHOOL OF MECHANICAL ENGINEERING

ATLANTA, GEORGIA

SPACE RADIATOR SIMULATION

SYSTEM ANALYSIS

Contract NAS9-I0415

by

William Z. Black and Wolfgang Wulff

Sponsored by the

Power Generation Branch, Manned Spacecraft Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Houston, Texas

April 1972





SPACERADIATORSIMULATION

SYSTEMANALYSIS

by

William Z. Black and Wolfgang Wulff

SCHOOLOFMECHANICALENGINEERING

GEORGIAINSTITUTEOFTECHNOLOGY

ATLANTA,GEORGIA30332

April 1972

Sponsoredby

Power Generation Branch, MannedSpacecraft Center

NATIONALAERONAUTICSANDSPACEADMINISTRATION

Houston, Texas

William Z. Black, Ph.D.
Associate Professor

_O_o_a_ro_e_orO__ I

Stothe P. Kezios

Director, School of Mechanical Engineering



FOREWORD

This report covers the results of one portion of a two year research

project carried out by the School of Mechanical Engineering at the Georgia

Institute of Technology, Atlanta, Georgia for the NASAMannedSpacecraft

Center, Houston, Texas, under Contract No. NAS9-10415. This report summarizes

the results of the radiator simulation analysis. The users manual for the

execution of the computer program resulting from the analysis in this report

is contained in a separate report. A third report covers the development of

a simplified system simulation and the initial phases of a system optimization

procedure. The project title is "Study of Design Parameters of SpaceBase and

Space Shuttle Heat Rejection Systems." The work reported here was monitored

by Dr. W. E. Simon of the Power Generation Branch of NASAMSC,Houston, Texas,

and was carried out by Dr. W. Z. Black and Dr. W. Wulff as Co-Investigators

and Mr. S. M. Morcos, Mr. S. L. Yao, and Mr. R. M. Hinson graduate students

in the School of Mechanical Engineering under the direction of Dr. S. P.
Kezios.

The work carried out by Dr. W. Z. Black is reflected in the analysis

of Part II, Chapters 2, 7, 8, ii and 14. Dr. Wulff is responsible for the

analysis of Part II, Chapters I and 3 through 6, Chapters 9, I0, 12 and 13

as well as the numerical analysis in Part III. Mr. Morcos completed the

property analysis reported in the Appendices A and B. Mr. Yao completed

the surface coating property and the shape factor analysis reported in

Appendices C and D, respectively.

ii



SUMMARY

A transient heat transfer analysis was carried out on a space

radiator heat rejection system exposed to an arbitrarily prescribed combination

of aerodynamic heating, solar, albedo and planetary irradiation. A rigorous

analysis was carried out for the radiation panel and tubes lying in one plane

and an approximate analysis was used to extend the rigorous analysis to the case

of a curved panel. For the rigorous analysis the radiator system consists of

equally spaced parallel coolant flow channels, all in one plane and connected

by plane fin panels of trapezoidal cross-section, symmetric with respect to
two normal planes, one passing through the tube axis, the other through the

center between adjacent tubes. Investigated was one typical tube-fin element

and the result extended over the entire system, on the basis of the above

symmetry.
The rigorous analysis was extended, by approximate methods, to include

radiator system which do not conform to the above symmetry restrictions.

As a result, radiator systems can be treated whose coolant flow channels

do not lie in one plane, provided that the radiative interaction between

neighboring tube-fin elements is small when comparedwith the radiant flux

densitites at the panel. Moreover, radiator systems with non-uniform irradiation,
non-uniform coolantinlet conditions and U-shaped coolant channels can be

treated, provided that the spacing between channels is small when comparedwith

the channel length.
The analysis permits the consideration of both gaseous and liquid

coolant fluids, including liquid metals, under prescribed, time-dependent inlet
conditions. The flow channels are covered with the samepassive thermal control

coating with optically diffuse but wavelength and temperature dependent

optical properties.

The major results of the analysis are the prediction of both transient

and steady-state, two-dimensional temperature profiles, the local and total

heat rejection rates, the coolant flow pressure drop in the flow channel, and the

total system weight and the protection layer thickness.

A computer program consisting of 62 program units was coded to
execute the numerical solution of the system of differential equations
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occurring in the analysis and to predict principal design parameters. The

modular program structure readily permits later modifications. A separate

final report entitled "Space Radiator Simulation, Manual for Computer

Program" has been prepared which describes the computer programs [29].

A simplified analysis was carried out to aid the detailed analysis
and to serve as the basis of systematic optimization. This analysis is

covered in a companionreport, entitled "Simplified Analysis and Optimization

of Space Base and SpaceShuttle Heat Rejection Systems" [30]. Regarding the

heat rejection rates, its results are, for the test cases carried out so far,

within 4% in agreementwith the results of the detailed analysis. However,
this rigorous analysis has greater applicability and detail.

This engineering analysis report is one of three final reports.

The other two reports are a user's manual describing the computer code of

this extensive, rigorous analysis [29] and the final report covering the

simplified radiator system analyses and system optimization which describe
both analysis and computer codes [30].

This report is written in two principal parts. The analysis and

the governing equations are contained in the first part, Chapter II, titled

Analysis. The numerical techniques are covered in Chapter III. Details
which the reader mayneed to expand the program are placed in the

appendices.
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I. OBJECTIVE

The purpose of the analysis presented here is to develop a radiator

system simulation which serves (i) to provide the design parameters necessary

for the development of the radiator system, (ii) to predict the transient

radiator performance under prescribed environmental and operation conditions,

(iii) to predict the system response to conditions which lead to coolant

fluid temperatures outside their operational temperature range, and (iv) to use

the system performance data to suggest design options for shuttle radiator

panel.

The class of system analyze_ here is described in the following

section. The system parameters produced for design purposes are those

which describe coolant fluid flow field and the thermal state of the radiator

structures as well as the geometry and the weight of the system components.

The arbitrarily prescribed environmental conditions consist of the

specification of ascent and reentry profiles and of solar, planetary and albedo

irradiation as a function of time.

The prescribed operating conditions are the coolant fluid inlet

properties.

The analysis is designed to accommodate spectral characteristics

of surface coatings, specified as functions of temperature. The analysis is,

however, restricted to optically diffuse coatings.

Both coolant and structural material properties are accepted as

prescribed functions of temperature. Coolant properties are specified as

functions of pressure or density as well as temperature.

The analysis serves as the basis for a large-scale computer code

in modular form. Material properties, complex mathematical operations and

readily identifiable tasks in the computer code are written as subprograms.

The computer code is designed to simulate space radiator heat rejection

systems during ascent, reentry and mission phases of the spacecraft and to

optimize the radiator system configuration via enumeration of parameter sets.

i



The Analysis is covered in the following chapter. The numerical

techniques employed are discussed in Chapter III, while the preparation for

the program units describing material properties is deferred to the
Appendices.

The computer code is described in a separate manual [29].

Whenthe contract began over two years ago, the emphasis on radiator

design was primarily on the space base heat rejection system. Since that time,

the emphasishas shifted so that it is now heavily placed on the shuttle

vehicle. Furthermore, the responsibility of developing the heat rejection
system has been shifted from the Power Generation Branch and the design philosophy

has changed to an integrated system which includes waste heat from sources

other than the power generation system which was anticipated as the sole

source of waste heat when the contract began. Due to the shift in design

philosophy, the report will not recommenddetailed design considerations,

although once heat loads from other sources are known, the analysis presented

here can be used to aid in the design of an integrated radiator system.
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II. ANALYSIS

The analysis is presented in three major parts. In the first part
are developed the governing equations of transient heat transfer within and

from the radiator system; these equations are the basis of the numerical

simulation. The second part of the analysis is devoted to the computation

of design parameters dictated by operational conditions, while third

part covers the development of thermodynamicand transport proper-

ties of structural materials, coolant fluids, and the atmosphere.
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A. System Description

Tworadiator systems are considered in this analysis. The

first system considers a flat radiator panel divided by regularly spaced
coolant channels all having identical inlet coolant fluid properties.

This system is treated rigorously. The second system considers a

non-symmetrical radiator panel. The non-symmetrical conditions can be

caused by a curvature in the radiator panel or by coolant channels

that are parallel but not equally spaced or formed in the shape of a U.

This system is treated in an approximate manner. The details of the

non-symmetrical analysis are given in Section IID.

For the purposes of system simulation, the radiator system

consists of four components:

(i)

(ii)

(iii)

(iv)

the fin

the coolant fluid

the coolant flow channel

the meteoroid protection layer

Twocoordinate systems were introduced (see Figure I), one for the fin

and the other for the flow channel and the meteoroid protection layer.

The rectangular Cartesian system (x,z) for the fin has its z-axis

parallel to the tube axis, starting at the inlet plane, and its x-axis

passing through the line of profile symmetry, with x = 0 designating the

root of the fin. Cylindrical coordinates (r,z) are used for both the

tube and the meteoroid protection layer, with the z-axis along the

tube.
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The radiator system is describable in terms of the following

six dependent state variables:

<i)

(ii)

(iii)

(iv)

for the fin:

the fin temperature Tf(t;x,z)

for the coolant fluid:

the fluid temperature T (t;z)
c

the fluid pressure

the fluid velocity

for the fluid flow channel:

p(t;z)

w(t;z)

the tube wall temperature T (t;r,z)
w

for the meteoroid protection layer

the protection layer temperature T (t;r,z)
m

These six dependent variables must satisfy four equations of energy

conservation, one for each component of the system, and further, the

equations of mass conservation and of momentum balance for the fluid.

These conservation equations take on the form of partial differential

equations subject to initial and boundary conditions. Finally, the

energy conservation equation for the fin involves the net radiant and

convective power fluxes leaving the fin.

In the following Sections, II B.2 through II B.5 are discussed,

in that order, the six principal governing equations associated with the

four system components listed above, the subsidiary equations governing

the radiative heat exchange and, lastly, the convective heat transfer

between coolant fluid and tube wall and between the fin and the atmosphere

during ascent and reentry.
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Figure 1 Fin Element and Coordinate System



B. HEATTRANSFER

i. Introduction

The objective of the radiator simulation is to predict both the

transient and the steady state heat transfer characteristics under pre-

determined operating conditions, stationary in the latter case and dynamic

in the former. Both cases were treated as initial value problems, and the

principal governing equations are partial differential equations which are

linear in the time-derivatives of first Order at most.

Under stationary boundary conditions steady state will be reached,

regardless of initial conditions*, as all partial derivatives with respect

to time vanish on account of dissipative effects within the system. For

the computer simulation of steady state conditions this means that the

process of advancing in time can be discontinued as soon as all variables

Yi' i = i, 2, ... N, have reached their expected asymptotic values (yi)_

with sufficient accuracy, that is when for some chosen ei

_i = lYi- (Yi)_ I ! Ei (I.i)

has been reached. The expected asymptotic values (yi)_ can be estimated

on the basis of the recognition that for large enough values of the time,

t > _

-bt

Yi ÷ (Yi)_ + ae (1.2)

with, a > 0, b > 0, to be determined; t > tM. The evaluation _'i during

the numerical integration is covered in Chapter III.

*Subject to certain continuity requirements which are discussed in Chapter III.
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2. The Fin

The objective of this section is to develop the energy equation

for the fin. The derivation is based on the assumptions that the thermal

conductivity and specific heat of the fin material are functions of

temperature while the fin density is constant. The energy balance for

the fin accounts for both radiative and convective fluxes from the fin

surfaces. The development of a method to predict the net radiant flux

from the fin surfaces can be found in Section II-6. The procedure used

for the evaluation of the convective flux from the fin surface is outlined

in Section II-7.

The energy balance on a differential volume of the fin can be

expressed as

8--x kfA x _ dx + _z kfAz _-_- dz + q"
net, rad

A +
s

,, _Tf

qaero A = pfVcpfs 8t

(2.i)

where T is the fin temperature and the coordinate system is shown in

Fig. i. The areas A and A represent the cross-sectional areas of the
x z

fin perpendicular to the heat flow in the x and z directions, and A
s

represents the total non-adiabatic surface area of the fin element.

The symbol V is the volume of the fin element. The properties of the fin

material are represented by the symbols kf,pf and Cpf which stand for

the thermal conductivity, density and specific heat, respectively. The

II II

terms qnet,rad and qaero appearing in Eq. 2.1 denote the radiative and

convective heat gain from the surroundings to the fin surfaces.

The first two terms in Eq. 2.1 constitute the net conduction

of energy into the fin element. The third and fourth terms on the left

hand side of the equation stand for the net radiation and convection gain,

respectively, from the surfaces of the fin element. The term of the right
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hand side of the equation represents the storage of internal energy within
the fin element.

The appropriate areas and the volume to be substituted into

Eq. 2.1 are

dAx = 2[sf - cx] dz (2.2)

dAz = 2[sf - cx] dx (2.3)

dA = dxdz/ [c 2 + i]1/2
s

(2.4)

dV = 2[sf - cx] dxdz (2.5)

where sf is the fin half thickness at its root and c is the negative slope

of the fin side surfaces.

Substituting Eqs. 2.2 through 2.5 into Eq. 2.1 and simplifying

the resulting equation yields

Pf %f

\t--/_x 8-x + 2(t-cx) [qnet,rad + q"aero ]

(2.6)
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The Normalization of Eq. 2.6 is achieved by defining nine dimension-

less quantities:

Let

g = x/H
(2.7)

= z/L

(2.8)

represent the nondimensional fin coordinate perpendicular and parallel to

the tube, respectively. Then

T = tw /L
o (2.9)

is the dimensionless time. The symbol w o stands for the velocity of the

coolant fluid entering the tube.

The nondimensional fin temperature is defined as

0f(_,_,_) =

Tf(T,_,_)

T
o

(2.10)

where T is the temperature of the coolant fluid entering the tube.
o

The dimensionless conduction parameter NNc and the Fourier

number are defined as
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NNc = HOTo3/kf (2.11)

NFo=
efL kf L

WoH2 pfCpfWoH2 (2.12)

and the nondimensional geometrical quantities are defined as

sf = sf/H (2.13)

B(_) = 2(sf - c_)
(2.14)

D = (c2+ 1) 1/2

(2.15)

where c is the negative slope of the fin side surfaces. For a non-tapered

fin c is zero.

Both the net radiative and convective flux terms appearing in

Eq. 2.6 are normalized by dividing each term by oT_ , or

qnet, rad = qnet _rad (2° 16)

oT 4
o

I!

~ _ qaero (2o17)

qaero eT 4
o
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The energy equation, Eq. 2.6, may now be written in terms of

the nondimensional quantities given in Eqs. 2.7 through 2.17. The resulting

nondimensional equation is

(Sf) + o __
_ kf dt + (Of)2

c D ~

- 2 _ (Sf) + _ NNc[qnet rad
+ qnet, conv] I

(2.18)

The dot superscript appearing in Eq. 2.18 denotes differentiation

with respect to nondimensional time and the subscripts _ and _ represent

partial differentiation with respect to the dimensionless coordinates

indicated.

The normalized energy equation, Eq. 2.18, defines the rate of

change of the dimensionless fin temperature Of.

The Boundary Conditions for Eq. 2.18 are taken as follows:

(i) The fin root is at the temperature of the outside of the

tube.

(ii) The fin tip is insulated.

(iii) The portion of the fin in contact with the inlet manifold

is at the outside temperature of the manifold.

(iv) The portion of the fin in contact with the exit manifold

is at the temperature of the outlet manifold.

Written in mathematical terms these four boundary conditions are

8f(T,0,_) = Ow(T,_o,_) (2.19)

88f (2.20)
(_,i,_) = o



0f(T,_,0) = ew(T,_o,0) (2.21)

Of(T,_,l) = 8w(T,_o,l ) (2.22)

Implied in Eqs. 2.21 and 22 is, firstly, that the fluid temperature

in the manifolds be equal to the fluid temperature at the tube inlet (inlet

manifold) and at the tube exit (exit manifold) and that it remain unaltered

along the manifold and vary only in time; secondly, that the temperature

drop through the manifold wall be equal to that through the tube wall.

The latter assumption is well justified because the temperature drop is

exceedingly small.

It may be noted in connection with the boundary conditions that

the radiative interactions between manifold and fin as well as between

manifold and tube are not taken into consideration at this time.

The Initial Condition for Eq. 2.18 may be any arbitrary relation

representing a continuous temperature distribution over the fin, including

the boundaries. The selection of the initial fin temperature distribution

is left to the user.
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3. The Coolant Fluid

The objective is to develop a unified treatment of all possible

coolant fluids, that is gases, dielectric fluids and liquid metals. Three

principal governing equations are sought which, together with the necessary

thermodynamic and transport properties specified for each fluid of interest,

define the fluid temperature Tc, the fluid pressure p (and thus the thermo-

static state of the fluid) and the fluid velocity w, all as functions of

time t and axial distance z.

The Continuity Equation for one dimensional flow through channels of con-

stant cross-sections reads

_t _z (pw) = 0 (3.1)

where p represents the fluid density. Replacing the density through the

thermal equation of state

p=p (p, T)
c

(3.2)

renders the continuity equation in terms of derivatives of the primary

variables T , p and w:
c

K
_t

__Tc _w + w 8 -- -K )
- B-_-= _z _z _z

where < and B stand for the isothermal compressibility and the isobaric

expansion coefficient, respectively

(3.4)
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(3.5)

The Momentum Equation

< ) 2_w _w _p 4_t w
P "_ + W_z = - Bz - d P "_'- + Paz

(3.6)

constitutes the balance between inertia forces on the left-hand side,

pressure forces,wall friction and external field forces (gravity) in axial

direction, on the right-hand side of Eq. 3.6. The Fanning friction factor

f is a function of the Reynolds-number NRe = d w/v, where d and _ stand

for the tube diameter and the kinematic viscosity, respectively and sub-

script o designates the fluid inlet conditions. The following relations

are used to compute the Fanning friction factor:

for NRe < 2300 (laminar flow)

64
4f =--

NRe

(3.7)

for 2300 <_ NRe < -106 (Ref. i)

-0.3

4f = 0.0054 + 0.396 NRe
(3.8)

for NRe > 106 (Ref. 2)

-0.237

4f = 0.0032 + 0.221 NRe
(3.9)

Equations 3.8 and 3.9 could be replaced by a single equation CRef.3)
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4f = [0.86859 En
NRe

1.964 £n NRe
- 3.8215]-2 (3.10)

which, however, requires more computational effort.

The Energy Equation. Let u, h h and T = Tw(t ; ri,k) represent,' c w

respectively the internal energy and the enthalpy of the fluid, the convec-

tive film coefficient and the tube wall temperature at the fluid-wall

interface. For one-dimensional flowthrough channels of constant cross-

section and with heating or cooling from the wall, conservation of energy

requires that, with respect to a stationary reference frame

2 2
w _ w 4

[p(u + --_)] + _z [pw (h + -_ - azZ)] = 7 he (Tw - Tc )

_T
c

+ _ (kc -_z )

(3.11)

The first term constitutes the storage of thermal and kinetic energies;

the storage of potential energy, being negligibly small for expected

accelerations, is ignored. The second term on the left-hand side stands

for the convection of thermal, kinetic and potential energies as well as

the power associated with the pressure. The right-hand side contains,

firstly, the convective heat transfer from the channel wall to the fluid

and, secondly, the axial heat conduction term which will later be shown

to be negligibly small for all fluids. The factor 4/d in front of the

convective heat transfer term results from the ratio of the channel

circumference to the cross-sectional area, evaluated for a circular tube.

The symbol k represents the thermal conductivity of the coolant.
C

Given a caloric equation of state

u = u(p,T ) (3.12)
c
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or an equivalent expression for the specific heat, Cp, one can write,

with the aid of Eqs. 3.2, 4 and 5

dh = c dT + I (i - BT ) dp
p c p c (3.13)

-_) dT +! (_p_ ST) dpdu = (Cp P c p (3.14)

and then recast Eq. 3.11 in terms of the derivatives of the principal

variables Tc, p and w:

_T

c _t heP Cp _---_-_T + pw 3w 4c 3t-d (Tw- T )c

3T 3T
3 c __._.c +

+-_z (kc-_z ) - pw [ep _z

_Pl (i- BT) + w -- " a]3z z

(3.15)

Thus, three governing equations, Eqs. 3.3, 3.6 and 3.15, have, been

established which define the three principal variables T , p and w,
c

provided the initial and boundary conditions are properly specified and

the convective film coefficient can be predicted. Since the normalization

of these equations, followed by an order-of-magnitude comparison will

indicate that the conductive term in Eq. 3.15 is negligible so as to

simplify the boundary conditions, the discussion of the initial and

boundary conditions is deferred until after the normalization.

The convective film coefficient is computed from the following

relationships between the Nusselt number NNu = hcd/kc' the Reynolds number
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NReand the Prandtl numberNpr = _ c /kp c

viscosity:

where _ represents the dynamic

For Npr < 0.I (liquid metals)

NNu = 6.5 + 0.025 (NRe Npr)0"8 (3.16)

which produces Nusselt numbers between those appropriate for uniform

heat flux (Martinelli) and for uniform wall temperature (Seban and

Shimazaki) (Ref. 4).

For Npr > 0.i and

for NRe < 2300 (laminar flow, Ref. 5)

NNu = 3.65 +

0.0668 (NReNpr 6)

i + 0.045 (NReNpr6)
(3.17)

for NRe _ 2300 (turbulent flow, Ref. 5)

NNu = 0.116 (NRe 0"667 - 125) Npr 0"333
(i +6) (3.18)

where 6 = d/L stands for the tube diameter-over-length ratio.

The Normalization of Eqs. 3.3, 6 and 15 is carried out for the purpose

of scaling and performing an order-of-magnitude comparison. The

computational effort is also reduced in the process.

Let

= z/L

T = tw /L
O

(3.19)

(3.20)
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represent the nondimensional axial distance and the nondimensional time,

respectively, and let the dimensionless state variables be defined as

T (t,z)
e

e (T,_) =
c T

o

(3.21)

(T,_) = p (t,z)

Po
(3.22)

(i,_) = w (t,z)
w
o (3.23)

and to represent the nondimensional temperature, pressure and velocity

of the fluid, that is, the principal dependent fluid flow variables.

The subscript "o" designates the constant reference state of the fluid

Introduce next the nondimensional densityat the tube entrance.

v(T, ¢)= p(t,z)
Po

(3.24)

the nondimensional radial distance from the channel axis

(3.25)

and the nondimensional tube wall temperature

e (T;n,¢) =
w

T (t;r,z)
w

T
o

(3.26)

Notice, that all dependent variables lie between zero and unity, except

and m whose product (v_) remains essentially equal to unity with neither

nor _ departing far from unity. The reference temperature To is, under

normal operating conditions, the highest temperature in the system.
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Furthermore, consider the following _-values to vary along the
channel axis :

_B =TBo (3.27)

_K = PO K (3.28)

e c

= P =__P_

cp c (Po' To) c
p p,o

(3.29)

k =k__
_k =

k (Po' To) ko
(3.30)

and finally, the following constant F-parameters:

PO

F = 2

P PoWo

(3.31)

4f

Ff = 4f =d 6
(3.32)

PO
F = ------------

z p c T
op_oo

(3.33)

2

w o

FM = Fz/Fp = C T (3.34)
Po o
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Let the dot above a variable designate partial differential with respect

to the nondimensional time T and the subscript _ partial differentiation

with respect to the dimensionless axial coordinate _. Then the principal

conservation equations, Eqs. 3.3, 3.6 and 3.15 read, respectively and in
nondimensional form:

¢_ [Oc +m(Oc)_ ] = _ + ¢<(_ + m_ ) (3.35)

F 2

= - --P- _ - Ff _---
_0_-m m_ _ _ 2

(3.36)

0 i 4NNu i 62

+ FM -- _m = _ • -- (@ - 0c) + 4NNu
qbcp NReNpr _qbcp

- _ (0 e) +x[ ¢(0c) c 1_

F _ • in+ FM --i _°_°

z qbcp _ _ qbcp
(3.37)

These are the three equations which define the three time rates of change_

" .
c' _ and _. It can be seen-from Eq. 3.37 that the axial conduction

is always small, of an order less than _2 (since NNu > 3), when compared with

the convective term, unless the fluid should reach the wall temperature

within the very first small fraction of the tube length. Axial conduction

is hence ignored as _2 _ 10 -6, and the order of differentiation of Eq. 3.37

is reduced to one.
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c I I$c F i 4NNu- -- _ + FM -- _ = w c _
z _cp v _cp _NRcNpr U_cp _; @c)_ + Fz

cp cp
(3.38)

The Boundary Conditions to be imposed on Eqs. 3.35, 3.36 and 3.38 are chosen,

at the channel entrance, to be

(i) mass flow rate _, prescribed as a function of time

(ii) constant inlet pressure P
O"

(iii) continuous transition, of the inlet fluid temperature, from an

initial temperature e = 8. to the constant operational temperature
i

8(t,0) = i, or an arbitrarily prescribed inlet fluid temperature that

is a continuous function of time

These boundary conditions accommodate the calculation of the steady state

conditions as well as of the most likely start-up operation toward stationary

operating conditions. Notice that there are no step changes implied in

any of the dependent variables which is essential for the numerical inte-

Writing these boundary conditions more specifically, one getsgration.

at _ = 0

--7T
@ (_, 0) = 1 (i- ei) e (3.39)

(T, 0) = 1 (3.40)

= 1
(_, 0) U(_, @) (3.41)

Here, the time constant was chosen arbitrarily so as to have the fluid

reach, within 0.1%, its steady inlet temperature at the inlet during the



23

time interval that is takes a fluid particle to pass through the channel.

Equation 3.41 is given through the thermal equation of state, Eq. 3.2.

The Initial Conditions appropriate to the system of Eqs. 3.35, 3.36 and

3.38 are derived from the requirement that the flow should initially be at

steady state with the fluid inlet temperature equal to the uniform channel

wall temperature. Setting the time derivatives equal to zero in Eqs. 3.35,

3.36 and 3.38 results in a system of_'_g_rdinary differential equati6hs

which are linear in d_/d_, de /d_ and d_/d_:
c

2 (3.42)
d_

d___ + -- = - Ff
Fp d_ d_ -_

dO FM __ 4NNu
F _ d_ + c d_ = (8w - 8 ) (3.43)
z _ d-_ _ + _7 m d _ 6NRcNPr c

dO
dn c 1 d_

+-- =0d_ (3.44)

These equations can be solved subject to the boundary conditions at

_=0
=i

0 =0.
c i

1

- 0 )
c

(3.45)

provided the function 0 = 0w(0 ; i,_) prescribing the initial channelw

wall temperature is specified For the present analysis 8 was set equal• W

to 0.. Equations 3.42 through 3.45 define the initial flow field.
1

quasi-Steady Flow. It may be recognized that the momentum transport

takes place at a much smaller time scale than the transport of thermal

energy in that the pressure and the velocity fields adjust virtually
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instantaneously to a change in flow inlet conditions while the response

of the temperature field to a change in channel wall temperature takes

considerably longer, the reason being that the pressure perturbations

propagate along the channel with the speed of sound. Unless one is

specifically interested in the motion of sound waves one mayconsider

the dynamics of the flow field, that is the pressure and velocity distri-

butions, as part of the boundary conditions and imposed instantly and

adiabatically by the flow inlet conditions.

The fluid temperature remains stationary during the dynamic

adjustment and the time rate of changeof both pressure and temperature
remain small since ordinarily the pressure gradient remains balanced by

the wall shear (and by the convective acc@leration in the case of a

gaseous coolant medium). Consequently, Eqs. 3.42 and 3.44 may serve to

establish the pressure and velocity fields at all times, subject to

boundary conditions given by Eqs. 3.40 and 3.41 while the temperature
field remains defined by Eqs. 3.35, 36, 38 and the initial conditions
discussed above Particularly, solving Eqs 3.35, 36 and 38 for

• • C

gives the differential equation which governs the temperature field:

$ = i 4NNu (e - @ )
c F _ w c

z _13 2 9 NReNpr
1 --

_cp _ v

+ F × [ _B L°(ec) - --9-c a_]
z ¢cp¢ K _;

2
1 a__

- _[(@c )_ + FMFf # 2 ]
cp

(3.46)
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This completes the discussion of the development of the governing

differential equations for the coolant fluid. All equations are solved

numerically as discussed in Chapter III. The thermodynamic properties cp'
B, and K are derived from the thermal equation of state, Eq. 3.2 and from

the zero-pressure specific heat or other available properties. All thermo-

dynamic functions as well as the transport properties K and _ are considered,

in general, as functions of two state variables, that is, of P and T or of

p and T, as discussed in Section E of Chapter II.
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4. The Flow Channel

The flow channel is treated as a circular tube with inner radius

r.l = d/2 and outer radius ro = r°l + st" The tube wall temperature

Tw(t;r,z) is defined through the familiar equation of energy conservation,

written for the case of circular symmetry:

_Tw 1 _ _Tw _2Tw 1 dkw [CSTw_ 2

_t = _ [ --- (r +- ] + +w r _r -_--) _z2 (PC)w dT [\-_--r/

where _ represents the thermal diffusivity of the wall material and
w

(pc) w its volumetric heat capacity. The boundary conditions are

atr=r°
l

_T

(Tw _ = kw wc Tc) _r

(4. i)

(4.2)

at r=r
o

3T _T= 8T

k w _ (2_ - _) km m = 0w _r _ kf _x _r
(4.3)

Here

is the convective film coefficient,
c

T the fluid temperature,
c

k the thermal conductivity,

the portion of outer tube circumference in contact with fins,

expressed in radians,

and the subscripts w, f and m designate, respectively, tube wall, fin and

meteoroid protection layer. Equations 4.2 and 3 constitute the continuity

of the heat flux at the fluid-wall interface and at the wall-fin and wall-

protection layer interfaces. Circumferential temperature variations are

ignored.
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After introducing

r

r.
1

x

' _ H ;

tw T
o w

"c =_L @w; = _--,
o

k kf rc i

_e = k-- ' _f = k H '
w w

k
m hd

= C

_m _w NBi = --k-- '
w

(4.4)

d T dk _ L

6 _= -- , = _ _ ' _Fo - wL # <w k dT ,w 2
W W r.

o I

with H representing the fin height, that is, the distance between the fin

root and fin tip, one may recast Eqs. 4.1, 2 and 3 to read

_28

8w *Fo,w n _n n --_n + )2
-- _ 2

_Ow 2 _Sw 2

(4.5)

at_ = I

i (0w 0 ) =NBi - c _n

(4.6)
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at n = no

3@ 38f 38
w (2_ - _) _m In = 0 (4.7)

The superscript dot represents partial differentiation with

respect to nondimensional time T. As before in the treatment of the coolant
2 -6

fluid one recognizes that, with 6 = i0 , axial conduction remains

insignificant. Thus, Eq. 4.5 takes on this final form

i 3 (n + +kw <_-_--) (4.8)
___ww) ._9w. 2

Sw = _Fo,w n 3_] 3n

Equations 4.6, 7 and 8 define the tube wall temperature, provided Eqs. 4.6

and 7 hold at some initial time and the initial temperature Ow(O;_,_) is

prescribed as a sufficiently smooth function of n and _.

Low Biot Number. When one compares possible heat fluxes at the

fluid-wall interface with the possible radiant fluxes from the outer

surface of the meteoroid protection layer covering the tube, one con-

cludes that the maximum fluxes occur at the inner tube wall and that the

Biot number NBi in Eq. 4.6 is the largest ratio to be expected of external

to internal thermal conductances. Thus, if NBi is small, say less than

0.05 (Ref. 6), then the temperature variation inside the tube wall is too

small for experimental detection and a computation of the detailed

temperature distribution on the basis of Eq. 4.8 cannot be justified

as the associated computational effort is considerable.

In cases where the equivalent Biot number, representing the

total thermal resistance within the channel wall and the protection layer,

is small, the tube, the protection layer and a representative portion of

the fin root are combined into a single control volume as depicted in

Fig. 2. The equivalent Biot number NBi and the chosen limit are

k _s s

w m

(4.9)
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Sm S�

Figure 2. Control Volume for Low-Biot Number Cases
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where s and s stand for, respectively, the tube wall and the protection
w m

layer thicknesses. The combined volumetric heat capacity per unit of

axial distance for the control volume consists of three parts, the first

one for the tube wall, the second for the protection layer and the third

for the first half fin element:

s s s (pcs) s
w w m m Ax r ×

_d (_es) w I (i +-_) + (i + 2 -_+ _-) (_CS)w + _d sw

s (gc)f
[i _ (i ._..t_t)

- 4 - ]
sr (_c)w

= X1 _d (_cs) w
(4.10)

where the subscripts w, m, f, r and t designate, respectively, parameters

of the tube wall, the meteoroid protection layer, the fin, the fin root

and the fin tip and where

d is the tube diameter,

p the density,

s the thickness,

Ax the node spacing on the fin, and

A_ = Ax/H, the nondimensional node spacing

Heat enters the control volume, per units of time and axial

distance, by convection from the fluid

he e '_d (Tw - T )

and by convection and/or radiation from outside

d + q" + Ax (q" + q"2 )(2_ - _) (_ + Sw Sm) m i f
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where the subscripts i and 2 designate upper and lower fin sides,

respectively, and where q" represents the sumof the convective and of

the net radiant fluxes entering the outer surfaces. In the case of _,

the average over upper and lower portions of the outer circumference is

to be taken.

Heat leaves the control volume through the fin by conduction,

again per units of time and axial distance

_T)
2(s _x f

evaluated at x = Ax/2.

Combining the last four expressions into the energy balance

leads to this expression

_T

w =_dh
%1 _d (_cs) w _t c (Tw - Tc ) + _d %2 qm" + Ax (_'i + _"2)f +

(4.11)

where is defined by Eq. 4.10 and
I

s + s

i w m)
X2 = (2 - _) (_+ d (4.12)

Equation 4.11 replaces Eqs. 4.6, 7 and 8 as well as Eqs. 5.3, and 5

governing the temperature distribution in the meteroid protection

layer and, lastly, Eq. 2.19 which constitutes one of the boundary

conditions for the differential equation governing the fin temperature

distribution. The only condition under which all the above equations

may be replaced by the single equation, Eq. 4.11, is given by Eq. 4.9.

Finally, it may be noted that Eq. 4.11 could also be normalized but since

no new dimensionless groups result from such normalization it is omitted

here.
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5. The Meteoroid Protection Layer

The differential equation governing the temperature distribution

within the meteoroid protection layer which covers the flow channel, is

identical to that for the channel wall, Eq. 4.8, except for the two

dimensionless parameters, the Fourier coefficient _Fo and the conductivity

temperature coefficient _k which now must be evaluated for the protection

layer material:

m

_Fo,m - _ _Fo,w (5.1)
W

T dk
o m

_k,m - k dT (5.2)m

After ignoring the axial conduction for the reasons stated in Section 4

one obtains as the nondimensional energy conservation equation

0m = _Fo,m _ _ n--_nJ +
(5.3)

Two boundary conditions are required, one of which is given by Eq. 4.7

while the other one is dictated by the heat flux continuity at the outer

boundary:

at r = r
e

_T ,,
m

k (]
m dr _m

(5.4)

where q" is defined as the net flux entering both by radiation and/or

aerodynamic heating. Equation 5.4 reads in nondimensional form at n = n e

90
m

3n = _Nc (qnet,rad + qaero )
(5.5)
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with _Nc representing a local conductance parameter

odT 3
O

qbNc = 2k
m

(5.6)

and I!

~ qnet _rad

qnet, rad = _T 4 (5.7)
O

qaero -

1!

qaero

oT4 (5.8)
O

II !!

Here, _ represents the Stefan-Boltzmann constant, and qnet,rad and qaero

the net radiant incident heat flux and the convective heat flux, respectively.

If the initial temperature distribution is given, and if Eqs. 4.7

and 5.5 hold initially, then the protection layer temperature _ is completely
m

defined as a function of time and location by Eqs. 5.3, 5 and 4.7, provided

the incident radiation and the aerodynamic heating are prescribed as

functions of time. The prediction of these incident heat fluxes is dis-

cussed in Section 6 and 7 of this Chapter.

In the case of low Biot numbers at the coolant fluid-tube wall

interface the meteoroid protection layer is lumped together with the tube

wall as discussed in Section 4 of Chapter II.
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6. Radiation

The objective of this section is to develop a procedure

to predict the net radiant heat flux incident on fin and tube surfaces

which are exposed to any combination so solar, albedo and planetary

irradiation. Included into the assessment of radiative transfer is the

radiative energy exchange between fin panel and flow channel or its

protective coating as well as the effect of structural panels in the

vicinity of the fin system; however, not included is any possible gas

radiation as could conceivably be encountered during reentry.

In seeking the B_oper mathematical model it is recognized,

firstly, that the prevailing thermal radiant energy lies in either the

visible (solar irradiation) or the infrared portion of the spectrum, and,

secondly, that the fin system is coated, for the purpose of optical

optimization, with a dielectric paint. Consequently, spectrally dependent

optical properties must be dealt with, but, for the latter reason, the

transfer matrix of radiative exchange can be expected to remain temperature

insensitive over some range of operational conditions, a fact which is

very much appreciated from the computational view point.

For the analysis, the fin surface Af, the outer surface on the

flow channel An, and the structural surface(s) An, are all considered

as parts of an enclosure C which is completed by a set of arbitrarily

concave, non-reflecting imaginary surfaces A which connect Am, Af ande

A and along which is specified the emerging net radiant heat flux
n

representing solar, albedo and planetary irradiation. The sum Am + Af +

A + A is the inner surface A of the enclosure.
n e c

Three steps are necessary for the prediction of the incident

II

net radiant heat flux qnet,rad" Firstly, the elemental exchange areas*

22 _is_ = cos_ i cos_j

_A._A. 2
i j _r

(6.1)

*For terminology and notations consult Ref. 7, Chapter 2.
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need to be computed on the basis of the geometric relation between fin

panels and flow channels. Here, the symbol r designates the distance

between two area elements dA. and dA. which are visible from each other,
l 3

and _i and _j represent the respective angles between r and the surface

normals on dA. and clA.. The next step is to compute, from its definition,
i j

the radiosity or leaving radiant flux density, W.:
3

OO OO

3 j,k d_ = ej,X ,X
o o

dX +

/ 22 sisj_. /oo_A. _A (i - _ W i dX
i j o j,X7 ,X

C

dA.
l

(6.2)

where Wj,%, Ej,% and e j,% stand for the monochromatic radiosity, the

monochromatic black body emissive power

2 hc2n 2 1

Ej,X - X5 (hcT/(kXTj7
e - i

(6.37

and the monochromatic hemispherical emittance, respectively; the subscripts

i and j designate two discrete points on Ac, and % represents the wave-

length. The Eq. 6.3 constitutes Planck's law of monochromatic emissive

power intensity; h, c and k stand for, respectively, Planck's constant,

the speed of light in vacuo and the Boltzmann constant. The third and

last step is to calculate, on the basis of local energy balance, the net

incident heat flux

(-" fOOq,, dX _ - Wj7qnet, rad ) = ,X = (Wi
j oJ J

A
C

_

S.S.

i J dA. (6.47
_A. _A. i

i 3
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It should be obvious that Eqs. 6.1, 2 and 4 contain all the

necessary fundamental principles but their evaluation will introduce a

numberof simplifications and modifications, each selected for the particular

system of interest. Specifically, Eq. 6.4 will have to supplement Eq. 6.2

for portions of A where the heat flux is specified. More importantly,
C

however, there is a choice to be made in view of the computational process

regarding particularly Eq. 6.2. One may either solve the monochromatic

version of Eq. 6.2 n times for the n significant spectral intervals

encountered and thus face the ultimate task of solving n x N simultaneous

linear algebraic equations when N discrete points on A need to be con-c

sidered (possibly at several time steps during the calculation process)

and then integrate the resulting total interchange areas over the spectrum

(see Ch. 5.6 of Ref. 7). Or, one may force the non-gray surface analysis

into a gray surface analysis by placing the burden of complexity on the

evaluation of appropriate optical properties. Both techniques afford

any desirable accuracy of allowing for the spectral differences in surface

properties, limited only by available calculation time; but the latter

technique was chosen because, as a result of this choice, the complexity

remains at peripheral parts of the computer code which are more accessible

for later modifications toward greater sophistication, also the complexity

may turn out, in almost all cases, to reduce partly to simple hand

calculations.

After introducing

OO

lei,% El, l dl oo

o fi oo Eo _i,l Ei,l dl (6.5)

I Ei, X dX 1 o
0

O0

ISi, I Wj,% d
0

c_.. = (6.6)
1..] _

I Wj I dk
O
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Equation 6.2 simplifies to

_2 s.s.
W. = e.E + 13

3 3 J _Ai_A.3

A
c

(i - eij ) W. _A.l 1 (6.7

which reduces to the gray-surface radiosity equation whenever Eq. 6.6

reduces to _.. = e.. The difficulty now lies in evaluating Eq. 6.6 even
13 i

though the radiosity Wj, I is as yet unknown.

By successively substituting the right-hand side of Eq. 6.2,

in its monochromatic form, for Wi, I on the right-hand side of that

equation, one obtains first (Ref. 8)

S.S.

W. = e Ej + (i - e ) i j g_3,1 j,1 ,I j,t _A. _A. ,i Ei,i
1 _1

A
c

/(_2 SiSm ]+ (i- el, I) _Ai@ A em, 1 Em, 1 + ... ) dAm dA.1

_c

(6.8)

and subsequently e.. as the quotient of two infinite series. Since the
13

enclosure radiation is dominated by the fin-sun and fin-sky interaction

and since Eq. 6.8 contributes significantly only to the fin-flow channel

interaction, the infinite series in Eq. 6.8 may be terminated after two

terms (two reflections; the resulting error is less than the uncertainty

in el), and Eq. 6.6 becomes:

@2 SjSk
K1j E.3 + Ac _Aj 2% Ek(Xik- Xijk) d_

aij 2

/_ss

j k me (_k dAkg.E.33 + A i _ - Xjk)

A
C

(6.9)
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where

"=o/E"Xi3 j,k (6.10)

Xij k = /Ek, % ek, % gj,% ei, % dl Ek
O

(6.ii)

In cases where the net radiant flux is specified over portions of A, the

emissive power E is to be replaced by the net radiant flux q" in Eqs. 6.9,

I0 and 12, which results in one additional term each in the numerator and

the denominator of Eq. 6.9.

In summary, the incident net radiant heat flux for the diffuse,

non-gray enclosure is calculated on the basis of an approximate gray-

surface analysis in accordance with Eqs. 6.4, 7 and 9 through II. The

spectral differences of the surfaces are accounted for in Eqs. 9 through

Ii. The remainder of this section is devoted to the solution of the

radiosity equation, Eq. 6.7.

Recalling that A is the sum A + A + Af + A of the outerc m n e

channel surface A , the possibly present, nearby structural surfaces
m

A , the fin surface Af, and the remainder of the enclosure A , onen e

recognizes that the integrals over A in Eqs. 6.4, 7 and 9 need to be
c

evaluated twice for each of the four parts, namely once with j = 1

representing the fin area and then with j = 2 for the exposed channel

area. Since the incident solar, albedo and planetary radiant flux

intensities are uniform over the fin area and averaged over the circum-

ference of the channel area

_2 SiSl
_A'_AIz

A
e

(z - ) W.dA,
_il- l l

w!

: (i- _el ) qel (6.12)
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32 sis 2
3Ai _A2

A
e

(i - _i2 ) WidA i
11

= (i- _e2 ) qe2 (6.13)

where q" designates incident solar, albedo and planetary heat fluxes,

appropriately averaged over a chosen area element. Should any structural

surfaces obstruct the incident radiant fluxes (An # 0) then the right-

hand sides of Eqs. 6.12 and 13 would have to be modified and reduced in

the shaded portions of A 1 and A2; and, if there are m such surfaces,

32 sisj _ 3 SkS j
i 3A.

7_Ai3A j (i _iJ) WidA" k = i J

A
n

(i - _kj) Wk ,

(6.14)

j -- i, 2, ... m + 2.

Obviously, the radiosity and the temperature are assumed to be uniform

over each structural component. No such structural components were

included in the analysis reported here, and Eq. 6.14 is taken to be zero.

This leaves only the integrals over Am and Af to be discussed.

Moreover, since Eq. 6.1 is symmetric with respect to its subscripts i

and j, the elemental exchange area is to be evaluated only once.

Considering first the fin, that is j = 1 and i = 2, and the

fact that over the channel surface the radiosity and the temperature

are considered to be functions of axial distance only

32 SlS i
_AISA i

A 2

(I - eli ) W.1 dAi =
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z=L

[l - _li(Z)] Wi(z)f

z=0 _=0
8A1 AAi (6.15)

z=L

[l - C_li(Z)] Wi(z ) SS(z;xf,zf) dZ

z=O

where L designates the tube length; R and _ are the polar coordinates of A2,

with origin on the tube axis, with _ = 0 and _ = _* representing, respectively,

the root of the fin and the contact line between the tube and its tangent

plane through the center of AA 1 on the fin. The first step in Eq. 6.15 was

obtained by integrating over AA 1 and subsequently applying the mean-value

theorem of integral calculus, while the second step simply defines the ex-

change function for every point (xf, zf) on the fin which was integrated in

closed form for the right-circular flow channel. The result is shown in

Appendix D.
I

The exchange function of the tube with respect to the fin is ob-

tained by dividing SS in Eq. 6.15 by (R_*). Thus

32

f s2si (i - e2i ) W i dA i =
_A23A i

A1 L H

--_ [i - _(I;,xf,zf)] W(xf,zf) SS(z,xf,zf) dxf dzf
R_

z=O x=O

For the numerical evaluation of the integrals a suitable quadrature such as

the trapezoidal rule is chosen so as to render Eq. 6.7 in this form
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: E "ji (6.17)
J

i,j = i, 2, ..., N

which is a system of N linear algebraic equations for the N = (nx + l)(n z + 2)

• and n are the numbers of sub-unknown values of the radiosity W i Here, nx z

divisions chosen in the x- and the z-directions, respectively. The vector P

on the left-hand side of Eq. 6.17 is called the excitation vector

P : - e.E. - (1 - _ .) "
J 3 J e3 qej

(6.18)

on the right-hand side, the transfer matrix Mji is given by

6ji - X_i [i - c_ji 1 SSji = M.._IZ (6.19)

where

o i#j
6.. = for
jz

1 i--j

is the Kronecker delta, Xi is a suitable quadrature coefficient and SSji is

given either by Eq. 6.15 or by Eq. 6.16 depending on whether j refers to the

fin or to the channel, respectively. There is no matrix multiplication

implied in Eq. 6.19, hence the underscores.

In the present program phase, Eq. 6.17 is solved at every time step

only when the transfer matrix is sufficiently temperature sensitive, otherwise

the transfer matrix is completely inverted only once to yield the unknown
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radiosity at any time.

Wi = _ (Mij)-ip.j (6.20)
J

through a simple matrix multiplication. It may be noted that the most signifi-

cant temperature dependence of optical properties is contained in the excita-

tion vector P..
J

All radiant heat fluxes are normalized with respect to oT 4 where
o

T designates the reference temperature, that is the fluid inlet temperature.
o

Exchange factors are nondimensional and need not be normalized.

I!

W. P

w = --_ _j = -_-- pj = J
J oT 4 ' oT 4 ' oT 4

o o o

(6.21)

The nondimensional forms of Eqs. 6.4 and 6.20 are used to compute

qnet,rad in Eqs. 2.17, 4.11 and 5.5.



43

7. Aerodynamic Heatin$

The aerodynamic heating model used to evaluate the convective flux

from the radiator surface on the orbiter vehicle is subdivided into three

major regimes. The first regime encompasses low speed flow for which the

heat transfer coefficients are determined from expressions appearing in stan-

dard heat transfer texts for flow over a flat plate. The second regime con-

sists of a model for high speed flow in which the convective heat transfer

coefficient is evaluated from an experimental correlation for flow over the

upper surface of the shuttle orbiter vehicle (Ref. 9). The third section of

the model encompasses a low to high speed transitional flow regime. Within

this regime the heat transfer coefficient is an interpolated value that lies

between the values obtained in the low and high speed regimes. Calculations

for the convective heat flux for all three regimes are based on Eckert's

reference enthalpy method (Ref. i0).

Within each of the three regimes the heat transfer coefficient is

calculated for cases where the flow is laminar, transitional or fully turbu-

lent. In addition to the evaluation of the heat flux when the flow is forced,

the procedure accounts for heat transfer by free convection at times when the

shuttle vehicle is stationary or moving with a relatively low velocity.

The program for the evaluation of the aerodynamic heating rate is

divided into six sub-tasks each of which is written as a separate subprogram.

This procedure allows for changes in the periphery of the program without

affecting the program foundation. The basic calculations are carried out in

and controlled from the SUBROUTINE C@NVEC. Atmospheric temperature and speed

of sound are evaluated within the SUBR@UTINE ATM_S. Atmospheric properties

evaluated at the reference temperature are calculated within the SUBROUTINE

REFP. The orbiter velocity and altitute are evaluated in the FUNCTION sub-

program ALTVEL. The SUBROUTINE NUS evaluates the Nusselt number for the

radiator system.

It should be noted that the analysis does not account for the effects

of shock wave interaction or interference heating caused by flow interference

between the orbiter, booster or any supporting structure.
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The analysis for the determination of the aerodynamic heating first
requires the evaluation of a reference temperature which is used for the

determination of all air properties. The reference temperature is a function

of the Prandtl number and recovery factor of the air, as well as the vehicle
Machnumber.

The Machnumber in turn is a function of the altitude and velocity

of the orbiter at any instant time. Altitude and velocity profiles for the

orbiter are contained in data arrays supplied by the user (seePartA-3cof the Users

Manual. If the value of the Integer I is used to specify either ascent or reentry

phase, then the N paired data points which define the velocity V and elevation

Z as a function of time t maybe expressed functionally as

V.1= V.1 (I, ti) i = 1,2,...,N (7.1)

z_ = zl (i, ti) i = 1,2,...,N (7.2)

Once the orbiter velocity and altitude are known as a function of time, the

vehicle Mach number M may be calculated from the equation

M = V (7.3)
C

The speed of sound c is an atmospheric property that is a function only of the

altitude.

The reference temperature is a function of the recovery factor r

which for laminar flow is

r = V_pr

and for turbulent flow (Ref. Ii) is
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r = Npr
(8 + 0.528M2/(22 + M2)) (7.4)

where the Prandtl number Npr is an atmospheric property. To avoid a disconti-

nuity in the value of the recovery factor between the laminar and turbulent

flow models, Eq. 7.4 was used as the expression for the recovery factor for

both flow models. The resulting error in the reference temperature was found

to be approximately 5 R in an extreme case.

All of the properties for the atmosphere used in the evaluation of

the heat transfer coefficient are evaluated at the high speed reference tem-

perature. Eckert (Ref. i0) recommends the expression

* M2i
i = 0.5 (iv + iw) + 0.Ii r (¥ , i) (7.5)

for the reference enthalpy i* which can be converted to the reference tempera-

ture T* once the relationship

T = T (i*) (7.6)

between the atmospheric enthalpy and temperature is known. The subscripts "="

and '_" in Eq. 7.5 refer to the enthalpy of the air evaluated at the free

stream and surface temperature, respectively, and y is the ratio of the

specific heats for air.

It should be mentioned that when velocities are low (M ÷ 0) Eqs. 7.5

and 6 yield a reference temperature that approaches the film temperature

(T° + Tw)/2. As a result Eqs. 7.5 and 6 were used to evaluate the reference

temperature for all three flow regimes, i.e., low speed, high speed and the

transitional regimes.

The convective flux is the product of the convective heat transfer

coefficient and the difference between the air enthalpy evaluated at the sur-

face temperature and at the adiabatic wall temperature. The adiabatic wall
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enthalpy i is related to the free stream enthalpy, recovery factor andaw
vehicle velocity by the relationship

rV2
i = i + (7.7)
aw _ 2gc

The convective heat transfer coefficient h° used in the reference enthalpy
1

method may be expressed in terms of the Nusselt number NNu

h.xc
= . i p

NNu *
k

(7.8)

where c* and k* denote the atmospheric specific heat and thermal conductivity
P

evaluated at the reference temperature T*. The symbol x denotes a characteris-

tic length of the radiator system which for forced convection is the distance

from the stagnation point on the shuttle to the center of the radiator panel.

The expressions for the orbiter Nusselt number selected for the low

speed and high speed regime and for laminar, transitional and turbulent flow

are summarized in Table I. Values for the Nusselt number for conditions lying

between the low and high speed regimes were obtained by interpolation so that

the convective heat flux from the shuttle varies continually from one regime

to the other. The symbols NRe and NNu appearing in the table denote the

Reynolds number and Prandtl number, respectively, where

p*Vx

N =
Re *

c
=__2_

Npr k*

The "*" superscript on each property indicates that the property is evaluated

at the temperature T*.
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For the low speed regime the expressions for the Nusselt number are

those for laminar transitional and turbulent flow over a flat plate (Ref. 6 ).

Nusselt number relationships for high speed flow regime are taken from Ref. 9

where experimental wind tunnel data are presented for a delta space shuttle

orbiter. The data are for leeward surface heat transfer at angles of attack

between i0 ° and 30 ° and Mach numbers of 8 and 16. The Nusselt number is

shown to be relatively independent of angle of attack so that the high speed

correlation may be applied to both the ascent phase for which the angle of

attack is approximately zero and the reentry phase when the angle of attack

may approach 60 ° The scatter in the data of Ref. 9 from the selected

Nusselt relationships is on the order of 100%.

The leeward surface correlation was selected because the aerodynamic

heating rates in this region of the shuttle are relatively low when compared

to heating rates for the lower body or windward surface. Estimates place the

peak reentry temperature of the lower surface stagnation line around 2100 F

while the peak leeward temperature is estimated to be about 600 F (Ref. 12).

Therefore, placing the radiator on the upper surface of the orbiter not only

will result in a more efficient operation upon reentry, but also will minimize

the need for reservicing of the surface coating on the radiator panels.

The aerodynamic heating analysis includes free convection from the

radiator surface during pre-launch operation and when the shuttle vehicle is

moving with a relatively low velocity. The expression for the free convection

Nusselt number is a function of the Grashof Prandtl product where the Grashof

number NGr is given by

NGr gB (_)2 y3= (Tw - T)

where g represents the acceleration of gravity, p,_ and T are the atmo-

spheric density, dynamic viscosity and temperature, respectively and T W

denotes the radiator surface temperature. The symbol y denotes the overall

dimension of the radiator panel in the direction parallel to the acceleration

of gravity. Since the atmosphere is assumed to be an ideal gas, the

pp. 296 and 313
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coefficient of thermal expansion B is simply the reciprocal of the average
absolute temperature of the air

Tw+T
OO

The free convection Nusselt numbers NNu f and their applicable ranges

of Grashof Prandtl product used for this analysis are

NNu f = 1.585 (NGrNpr)

0.195

NNu f 0. 590 (NGrNpr) O. 250

(i0-i< NGrNpr < 104) (7.9a)

(104<_ NGrNpr <- 109) (7.9b)

NNu f O. 130 (NGrNpr) O. 333 (NGrNpr > 109) (7.9c)

The values for the free convection Nusselt number given in Eq. 7.9 were

multiplied by the ratio (x/y) and then added to the forced convection Nusselt

number to obtain a value that accounts for combined free and forced convection

in the low speed regime.

Equations 7.1 through 7.8 combined with the appropriate Nusselt

number relationship from Table i for forced convection and Eq. 7.9 for free

convection are sufficient to determine the convective heat flux into the

radiator surface which is given by

q aero" = h.1 (i - iaw) . (7.10)

The convective flux may be normalized by dividing by the heat flux oT 4 or
o
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qaero =

h (i- ii aw )

oT 4 (7. ii)
o

where To is the fluid temperature, at the inlet plane to the flow channel. The

normalized convective heat flux given by Eq. 7.11 is used in the energy equa-

tion for both the fin (Eq. 2.18) and the meteoroid protection layer (Eq. 5.5).
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C. DESIGNPARAMETERS

Certain design parameters are necessary for the design specifica-
tion, for the selection of the optimum radiator system and even the system

definition as required for the heat transfer analysis. In the following are

discussed, in that order, the prediction of the meteoroid protection layer

thickness, the system weight and a collection of nondimensional groups which

define the radiator system, the operational conditions, and the performance
characteristics.
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8. Meteoroid Protection Thickness

In this section an engineering equation is developed to predict the

thickness of a meteoroid protection layer required to cover all radiator sur-

faces that might be damaged by the impact of a meteoroid. Several assumptions

have been made during the derivation. They are:

i. The meteoroid particle is spherical.

2. The meteoroid flux is isotropic.

3. Poissons distribution law describes the probability

of an impact of a meteoroid.

It should be mentioned that any equation used to predict meteoroid

protection thickness is only as accurate as the experimental data used in

that equation. Even though much information has been published in recent

years concerning protection theories, there is still considerable question

as to the density, velocity and mass distribution of meteoroid particles in

outer space. In addition to these uncertainties, two basic models for

penetration theory have been proposed within the last decade and there appears

to be no close agreement between the two. Experimental verification of either

model has been hampered by the fact that particle velocities used in experi-

mental tests have only recently approached the meteoroid velocity range. In

short, an extremely reliable theory for the prediction of protection layer

thickness does not presently exist.

Structural materials that can be used in this study as a protection

layer are copper, aluminum and beryllium. While both copper and aluminum were

selected primarily as fin and tube materials due to their superior heat trans-

fer characteristics, beryllium was chosen for its protection capabilities.

The penetration theory predicts a protection layer thickness that decreases

as the modulus of elasticity increases. Therefore, beryllium becomes an

attractive protection material due to its high modulus of elasticity and its

relatively low density. In fact studies (Refs. 13 and 14) have shown that

beryllium can significantly reduce protection layer weight.

The basic equation (Ref. 15) for the depth of penetration of a

meteoroid particle into a target of infinite depth is



53

P =yd
CO

(8.1)

where

y empirical constant generally accepted to be in the range of

1.5 to 2.5

ppdensity of the meteoroid particle

0t density of the target material

velocity of the meteoroid particle

c velocity of sound in the target material

d diameter of the meteoroid particle

¢ constant between 1/3 and 2/3

0 constant between 1/3 and 2/3

The ratio of the meteoroid velocity and the velocity of sound in the

target represents a target Mach number. The velocity of sound in the target

can be expressed in terms of the modulus of elasticity

-G= _/Et gc/P t (8.2)

where

Et modulus of elasticity of the target material

gc proportionality constant relating mass units to force

units

Pt target density

If the meteoroid particle is assumed to be spherical, the diameter

may be written in terms of its mass
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d ____

_Pp/

(8.3)

where

M meteoroid mass
P

0p meteoroid density

The probability that an exposed surface will be struck by a meteoroid

during a period of time can only be determined after the distribution of

meteoroids of a given mass is known. This information is usually given in

the form of an equation such as

-B
F = eM (8.4)

P

where

F cumulative number of impacts of particles with mass

M or larger per unit area per unit time

M mass of the meteoroid particle.
P

The symbols e and 8 represent experimentally determined constants. Published

(Ref. 16) values of _ and 8 vary over a considerable range, but they lie

within the limiting values,

1.3 x 10 -15 < _ < 2.54 x 10 -9

i.ii < _ < 1.34

-i

[ft 2 day gm -_]

[Dimensionless]

The cumulative number of impacts on a surface with a vulnerable area

of A during a mission time of T by a meteoroid of mass M of larger is then
P

N = FAr = AT _ M
P
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It is generally assumed(Ref. 17) that meteoroids are randomly dis-
tributed in outer space and that each collision can be described by Poissons

probability law. From the Poisson distribution function, the probability of
zero events occurring P when the average numberof events is N is

o

-N
P = e
o

or

in P = -N
O

Substituting the value for N gives the probability that no meteoroid of mass

M or larger will impact on the surface of area A during time T of

or

in P = AT_ M -_
o O

lib
_AT

M =
p -in P . (8.5)

o

To account for the fact that all meteoroids do not strike the pro-

tection layer normally, the meteoroid velocity V may be replaced by a critical

velocity V where
C

= V(cos _)nc (8.6)

angle between the direction of V and the normal to the protection

surface

n an experimentally determined constant.

If n is selected to be unity the damage to the protection layer caused by an

oblique collision is based on the meteoroid's normal component of velocity.

A more conservative approach would be to set n = 0 in which case all particles

are considered to impact normally.
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If the meteoroid flux is assumedto be isotropic the angle depen-

dence maybe replaced by

2 )i/3_(cos %)n= 3n86+2 (8.7)

Finally account must be taken for the fact that the meteoroid will

not impact on an infinite target, but one with a finite thickness. As a

result even though the meteoroid may not penetrate the protection layer,

spalling may damage the radiator panel. To account for spalling the thick-

ness of meteoroid protection t used should be larger than the predicted

penetration into an infinite target or

t = aP
(8.8)

Accepted values of a lie between 1.5 and 2.0.

Equations 8.1 through 8.7 may now be substituted into Eq. 8.8 to

give an expression for the meteoroid protection layer thickness. The result

is

t = aye) \-ln PJ PP 12(Etgc/p )1/2 3n86 +2
\Ptl t

(8.9)

where

t - thickness of protection layer (inches)

a - experimental constant (dimensionless)

y - experimental constant (dimensionless)

- experimental constant that relates meteoroid flux to mass

(gm/(day ft2))

6 - experimental constant that relates meteoroid flux to mass

(dimensionless)
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A - vulnerable area requiring protection (ft 2)

T -- mission time (days)

P - probability of no damagecaused by impact of meteoroid
o

(dimensionless)

pp -density of meteoroid particle (gm/cm 3)

Pt - density of protection layer (lbm/ft3)

- velocity of meteoroid (ft/sec)

E t - modulus of elasticity of protection material (lbf/in 2)

2
g - 32.174 ibmft/ibfsec

8 -experimental constant (dimensionless)

-experimental constant (dimensionless)

n - experimental constant that describes penetration depth as a

function of angle of incident (dimensionless).

Selection of ValUes for Experimental Constants

Values for the experimental constant p, _, pp and V used in Eq. 8.9

were selected fromthe Manned Spacecraft Center publication for meteoroid

environment criterion (Ref. 18).

The values for _ and 8 for meteoroids having a mass between i gm

10 -6 gm used in Eq. 8.4 are

= 1.888 x i0 -I0 gmB/(ft2day) (8.10)

8 = 1.213 (8.11)

The average meteoroid density is

pp = 0.5 gm/cm 3 (8.12)

and the average meteoroid velocity is
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= 20 km/sec. (8.13)

Values chosen for the remaining constants appearing in Eq. 8.9 are
summarizedin Table 2. Values of these constants are also listed in the table

that will yield optimistic (minimum) and pessimistic (maximum)thicknesses for

the meteoroid protection layer.

RecommendedValue

a i. 75

y I. 50

1/2

e 2/3
n 1.0

Pessimistic Value

2.0

2.5

1/3

2/3

0

Optimistic Value

1.5

1.5

2/3

1/3

1.0

TABLE 2. Empirical Constants for Meteoroid Protection Layer Thickness

The following is an analysis of the sensitivity that the meteoroid

protection layer thickness has to the uncertainty in the values of the five

parameters listed in Table 2. This information will enable the user to judge

his selection of these constants from within the recommended ranges.

An expression for the error in the meteoroid protection thickness

may be obtained by taking the logarithm of Eq. 8.9 followed by differenting

the resulting equation. This process yields the equation

n0 nOt a y #t (-_-I 3n@B+2 ] _-- [3-_+2 ] n • (8.14)

If the symbol E is selected to represent the relative error in the meteoroid
a
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protection thickness resulting from a relative uncertainty in the value for

the parameter a, then it is evident from Eq. 8.14 that

E = dt/_____t= 1.0
a da/a

when all other parameters are held constant. Similarly the error causedby

an uncertainty in the value of y will be

dt/t
Ey - dy/y = 1.0

Whenthe value for e is taken to be the recommendedvalue of 2/3

and B is set equal to the value fixed by MSC'senvironmental model (Eq. 8.11),

the resulting error in the meteoroid protection layer thickness due to an

uncertainty in the value for n is

= dt__ = . n@ ) = - 0.15
En dn/n - (3nOB+2

The magnitude of the error for the final two parameters ¢ and 8 are

a function of the material selected for the protection layer. In order to

give an indication of the range of errors that can be expected for various

protection materials, the errors were calculated for the three structural

materials that were selected in the program: aluminum, beryllium and copper.

If the meteoroid particle density is assumedto be fixed at the value re-

commendedby the MSCenvironmental model (Eq. 8.12), then an uncertainty in
the value of ¢ from the recommendedvalue of 1/2 would cause an error in the

protection thickness of

dt/t
E¢ - d¢/_

which for each of the three structural materials results in the following

errors
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E_ = -0.85 aluminum
E_ = -0.65 beryllium

E_ = -1.44 copper.

The high density and low modulus of elasticity of copper makes

its protection characteristics rather undesirable. For this reason the

error of 1.44 indicated for copper probably will never be experienced in

practice, and this value should be considered as a limiting case.

An uncertainty in the value of 0 from the recommendedvalue of

2/3 would cause an error in the protection layer thickness equal to

dt/t = [Oln (_) nO
EO = dO/0 - 3n0_+2 ]

e

which for each of the three structural materials is:

E = 0.77 aluminum
0

E = 0.20 beryllium
0

E = 1.01 copper.
0

The errors calculated in the analysis are summarized in Table 3.

TABLE 3. Ratio of Relative Error in Thickness to

Relative Uncertainty in Empirical Constants

Protection

Material

Parameter

a

Y

n

Aluminum

1.0

1.0

-0.85

0.77

-0.15

Beryllium

1.0

1.0

-0.65

0.20

-0.15

Copper

1.0

1.0

-i .44

1.01

-0.15
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If the error values for copper are excluded, the protection thickness

is most sensitive to variations in the parameters a and y and least sensitive

to variations in the parameter n. Even though the protection thickness is

least sensitive to the selection of n, it should be noted that the 100%

variation between the optimistic and pessimistic value of n is the largest

of all of the parameters. Also it should be noted that the signs on the
values in Table 3 indicate that an increase in the parameters a, y and e

result in an increase in the protection layer thickness, while an increase

in the values for _ and n result in a decrease in the protection layer

thickness. This fact can be verified by the choice of the values of each

of the parameters listed in Table 2. Thevalues labeled as those which will

produce a pessimistic value for the protection thickness are maximumvalues

for a, y and e and minimumvalues for _ and n.

To further evaluate the effect the meteoroid protection thickness has

on the performance of the fin system, the temperature of the coolant fluid

at the exit plane of the flow channel was evaluated first under the

"pessimistic" conditions for the meteoroid protection layer, second for
the "recommended"conditions and finally for the "optimistic" conditions.

The results of these computer runs are shownbelow.

Case

Pessimistic

Recommended

Optimistic

Protection Layer
Thickness-lnches

0.377

0.063

0.020

Normalized Outlet
Fluid Temperature T/T°

0.8855

0.8922

0.8932

Even though the thickness of the meteoroid protection layer varies by

nearly a factor of 20, the resulting error in the enthalpy drop is only

0.8932 - 0.8855
i - 0.8922 • 100% = 7.15% .
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9. The Mass of the System

The system mass is computed, firstly as a convenience for the user

and secondly for the purpose of the planned system optimization. The system

mass includes

(i) the mass of the fluid in all tubes

L

d2_ / d2_ L d_ (9.1)M = n PcdZc t 4 = ntPc,o 4
o o

(ii) the mass of the fins

Mf = n t H L pf (sr + st)

(9.2)

(iii) the mass of all tubes

and

Mw = n t sw L • _ (d + sw) Pw

(iv) the mass of the protection layer

(9.3)

M = n t s L Pm [_(d + s + -m m w Sm) Sr] (9.4)

but it does not include the thermal coating nor the mass of the manifold

and the fluid in the manifold. In Eqs. 9.1 through 4 represent

n the number of tubes
t

d the tube diameter

P the density

L the tube length

H the fin height, distance between fin root and fin tip

s the thickness

while the subscripts designate p and s as follows

c coolant fluid

f fin
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m meteoroid protection layer
r fin root

t fin tip
w tube wall

o inlet condition.

The integral in Eq. 9.1 is time-dependent and evaluated at the initial
conditions.
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I0. Nondimensional System Parameters

The governing equations in the preceding radiator system analysis

are developed in non-dimensional form for the purpose of (i) reducing the

number of parameters, (ii) evolving the set of relevant parameters, and

(iii) presenting the results in a general form which is applicable to

groups of systems rather than an individual system. A summary of parameters

is presented here for the detailed analysis discussed in the preceeding

chapters.

The transient flow field is the coolant channel and the temperature

field over the fin can be represented as functions of:

a) the independent variables

tw

time • _ o (I0.i)
L

axial coordinate

radial coordinate

transverse coordinate

normal to the channel

axis

= _ (10.2)
L

2r

d (10.3)

x

H

b) the dependent system variables

Tf

fin temperature 0f (_,_;T) = _--
o

T

channel temperature 0 (n,_;T) = w
w T

o

meteroid protection

layer temperature

coolant fluid temperature

T

0 (n,_;T) =
m T

o

T
0 (_;_) =-_c
c T

o

(i0.4)

(10.5)

(10.6)

(10.7)
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coolant fluid pressure

coolant fluid velocity

_(_,T ) : -P-- (10.8)

Po

_(_;T ) = w___ (10.9)
w
o

The solution to the problem will depend on the geometry of the

system, the material properties and the definition of operational conditions.

There was no attempt made to establish similitude with respect to the

material properties because the scaling laws would either be too restrictive

to allow for general property variations or too complex (for instance, the

concept of corresponding states for gases). Consequently, the _-parameters

defined in Eqs. 3.27 through 3.30, in Eq. 4.4 and in Eqs. 5.1, 2 and 6 are

omitted fromthis summary; they constitute temperature and pressure

variation of properties. This leaves the following list of parameters,
_D

in addition to n, the number of tubes:

c) the geometric parameters

fin height-to-length ratio _:H
L

(10.10)

fin profile slope C

S -- S
r t

2H
(lO.11)

fin root thickness
S

- r (10.12)
S ---- --

r H

tube diameter-to-length
d

ratio _ = L (1o.13)

channel wall thickness

2s

s :___w
w d

(10.14)

2s

protection layer thickness s =
m d

(10.15)
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d) the operational parameters

coolant flow Reynolds number

dw
o

N R =_e
O

(10.16)

Prandtl number

(representing coolant selection) Npr = (_k--_)

e o

(i0.17)

inlet pressure heat

compressibility

F : _--
p (pw)o

_npd2c

Qo= -
4oT 3_

0

(1o.18)

(10.19)

inlet coolant power flux Fz
o

(lO.2O)

where n is the number of tubes

incident radiant heat flux

meteoroid velocity

q"

Qrad - o
e _T 4
o o

V
mM -

m c
m

(i0.21)

(i0.22)

protection layer density

(representing selection of

protection layer material) (10.23)

where Pmt is the density of the meteoroids.
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Similarity for ascent and reentry operations is difficult to establish

unless one restricts oneself to similar velocity-altitude profiles which

can be represented by the

max. Machnumber M = (v/c)max max (10.24)

and its corresponding (through samealtitude)

Reynolds_number

Prandtl number

Grashof number

(before launch)

0vL
(NRe)_ _ (i0.25)

(Npr)_ =. _ Cp_ (10.26)k

NGr 2
_)

This completes the list of non-dimensional groups resulting from

the detailed analysis.
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D. Extension of the Analysis to Related Systems

II. Non-Symmetrical Heating

The purpose of this section is to describe a segment of the program

which is intended to extend the application of the radiator simulation to

non-syrmnetrical flow conditions in adjacent tubes. This program will also

account for, in an approximate manner, a radiator panel which does not lie

in one plane, or a panel which consists of U-shaped tubes.

In the original simulation of the radiator system, i_ was assumed

that the coolant fluid entering all tubes has identical properties. As a

result, the operating conditions and heat loss is determined for a single fin

segment between two adjacent tubes and these conditions are assumed to exist

for all other fin segments. In reality, this situation will exist only when

all tubes are fed by a relatively large manifold whose flow rate and tempera-

ture entering each tube is unaffected by the removal of coolant fluid at

each succeeding channel entrance.

The actual flow situation could possibly be far from the idealized

case which was assumed to exist because it leads to a simplified mathematical

model. A manifold of realistic size will lose heat by radiation from its

surface and by conduction into the fin elements so that the coolant fluid

entering individual flow channels will experience a difference in temperature.

Furthermore, unless the manifold is carefully reduced in size after passing

each tube inlet, neighboring tubes will not receive identical mass flow rates.

Also, two adjacent tubes may be fed by the outlet flow from separate fuel

cells which may be operating under different load conditions causing non-

symmetrical conditions in adjacent fin panels. In short, a situation where

two tubes receive fluid at different inlet conditions is to be expected.

For the purpose of extending the application of the main program to

situations discussed above, a series of program units were written and inte-

grated into the main program unit. These programs calculate the location of

the adiabatic plane on a fin which separates two tubes having different inlet

flow rates and temperatures. The fin height to the adiabatic plane is then

used as input to the main program. The calculations with the main program

remain unaffected since the mathematical model requires only that the input

value given for the fin height is that distance from the tube to the location

of the adiabatic plane.
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The analysis considered here may also account for, in an approximate

fashion, fin elements that do not lie in one plane. If the radiator panel

is wrapped around a cylindrical structural component (Fig. 3a) adjacent fin

panels will be under the influence of different effective sink temperatures.

In this analysis the assumption is made that the regular breaks in the radiator

panel occur at the adiabatic plane between the tubes rather than at the tubes

themselves (Fig. 3b) which is probably the most reasonable location. If the

cylindrical panel is composedof numerous tubes and the curvature is gradual,
the difference between the two cases should be negligible.

The program accepts two sink temperatures supplied by the user or it
calculates the correct sink temperature from the MRI incident flux data. The

analysis of this section assumessteady state, one-dimensional conduction in
an untapered fin. The fin may radiate from one or both sides when the fin

panel is in one plane. Whenthe panel is curved the fin is assumedto radiate

only from the convexed surface. Fluid and fin properties are assumedconstant
at the inlet conditions. No convection from the fin surface and no radiant

blocking of the tubes is considered. The only incident fluxes considered in

this analysis are those accounted for in the MRI program; i.e. solar, earth

and earth albedo.

The user is cautioned that the analysis considered here assumesa

one dimensional model and as such represents an approximation to the actual

operating conditions of the non-symmetrical radiator. This caution is par-

ticularly applicable to the panel that contains U-shaped tubes, because this
situation can lead to a highly two dimensional condition.

The analysis considers the ith tube of a radiator panel of thickness

t, inside tube diameter d, tube length Liand distance between tubes of 2H

(Fig. 4). The energy transfered from the ith tube carrying fluid with an

inlet temperature of Toi, specific heat of c and mass flow rate of _. isp l

qi = _i Cp (Toi - Tbi) (I - e"Ui) (Ii.I)

The quantity U. is given by
l

° --

l

ip

(11.2)
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(a) Fin Segments Inclined At Tube Locations-

Geometry For Physical Model.

Adiabatic Planes

(b) Fin Segments Inclined At Location Of Adiabatic

Planes-Geometry For Mathematical Model

Fig. 3
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where h. is the convective heat transfer coefficient of the fluid in the tube
l

and Tb i is the average fluid bulk temperature (also assumed to be the fin root

temperature.)

The convective heat transfer coefficient h. in Eq. ii.i is evaluated
l

from the Nusselt number which is related to the Reynold and Prandtl numbers

by the expressions

NNu = 5 + 0.025 (NReNpr)0"8
for 1 Npr < 0.I (11.3 a)

( NRe> 2300

. 0.8 0.3-

NNu = 0.023 (NRe Npr )
for Npr > 0.I (ii.3 b)

NRe > 2300

NNu = 3.65 +

0.0668[NReNpr(d/L)]

I + 0.045[NReNpr(d/L)] 2/3

NRe _ 2300 (11.3 c)

The heat rejected from the coolant fluid given in Eq. ii.I under the

assumption of steady state and one-dimensional heat transfer can be determined

by calculating the net radiant loss from the fin surfaces. If one side of the

ith fin surface is radiating to an environment with an effective sink tempera-

ture of T. then
I

qi = _li E hli L.l _ (Tbi4 _ Ti*4)

+ _2i _ h2i L. a 4 *4i (Tbi - Ti ) (11.4)

where _li and _2i are the fin effectivenesses for the fin attached to the left

and right of the ith tube, respectively, and hli and h2i are the distances

between the tube centerline and the adiabatic plane fo_ the fin attached to

the left and right of the ith tube.

When the fin radiates from both sides, the effective sink temperature

will be different for both sides and the net radiative flux will be
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qi 2_i i E hli L. o 4 *4= m (Tbi - Ti )

+ 2_2i E h2i L. o 4 _*4.l (Tbi - Ti # (11.5)

*4
where the sink temperature To becomes

i

*4 *4 I

T . +
* ul T6i

T. =

l 2

1/4

(11.6)

The subscripts u and 6 in Eq. 11.6 denote the sink temperatures for the upper

and lower surfaces of the fin respectively.

The fin effectiveness in Eqs. 11.4 and 11.5 is a function of the

conductance parameter N and• the ratio of the sink temperature to base tem-
c

perature T _/Tb or for the ith tube

_li : _ (Ncli' Ti/Tbi)
(11.7)

_2i = _ (Nc2i' Ti/Tbi)
(11.8)

The conductance parameter is defined as

E_T 3 2
bi hli

Ncl i = and (II .9)
Kt

Nc2 i =

E _ T3 2
bi h2i

Kt

(11.1o)

where K is the thermal conductivity of the fin material.

In addition to having a continuous slope in the fin temperature

profile at the adiabatic plane, the fin temperature must also be continuous

at this plane. For a one dimensional fin the temperature at the adiabatic

plane T is a function of the conductance parameter and the ratio of sink tem-

perature to base or
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T = T (Nc, T"/T b) (II.ii)

As the program searches for the position of the adiabatic plane,

the distances between the tube centerline and adiabatic plane is systematically

varied until the fin tip temperatures given by Eq. II.II for two adjacent

tubes are equal. As an example, consider the ith and i+l tube. Using the

subscript i to denote a fin segment attached to the left of a tube and the

subscript 2 to denote the fin segment attached to the right of a tube, the

tip temperature profile will be continuous when

T2 i - Tli+l _ 0

If the difference in these two tip temperatures is denoted by 6i, then 6.1

becomes a function of T2i and Tli+l. By combining Eq. 11.11 and the definition

of N these two tip temperatures may be specified by the functional relationships
C

T2i = f (Tbi, h2i)
and (II. 12)

Tli+l = f (Tbi+l, hli+l)
(i1.13)

The fin base temperatures of the ith and i+l tube can be determined by Eqs.

ii.7 through 11.9 or written functionally

Tb i = f (hli , h2i ) and

Tbi+l = f (hli+l, h2i+l)

(11.14)

(11.15)

If Eqs. 11.12 through 11.15 are combined, the difference in the two

temperatures 6. may be expressed as
l

6. = 6 (hli h2i+l)l i ' h2i' hli+l'
(11.16)

But from the geometry of the radiator system
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hli = 2H.I - h2i-I and (11.17)

hli+l = 2Hi+I - h2i (Ii.18)

where 2H. and is the distance between the centerlines of tubes i-I andi 2Hi+l
i and tubes i and i+l, respectively.

By combining Eqs. 11.17 and 11.18 with Eq. 11.16, the final functional
relationship for the difference in the fin temperatures at the adiabatic plane

is _given by

6i = 6i (h2i_ I, h2i, h2i+l) (11.19)

In other words 6. can be expressed entirely in terms of the distance from tubel
centerline to the adiabatic plane for the tube under consideration plus the
samedistance for tubes on either side.

The approach to the solution for the location for all adiabatic planes

is one which gives 6. = 0 for all i tubes. The program utilizes a Newton iter-
1

ation to determine an appropriate change in ith adiabatic plane Ah.. Written
i

in matrix notation, the relationship between _. and the difference in tip
1

temperatures 6. is
l

[6i ] = [Pij][Ah i]
(11.20)

where the elements of the matrix Pij are given by

[Pij i (11.21)] = _h. "
J

and the elements of the vector Ah. are given by
i

k+l k
Ah. =h. -h.

1 i i
(11.22)
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where k denotes the k th iteration used to find a set of adiabatic plane
locations for all fin elements which result in _. = 0 for all i tubes. A

l

mathematical subroutine is used to invert the matrix [Pij ] so that the values

for all adiabatic planes may be calculated from

[Ahi] = [Pij]-i [6i] (11.23)

Once the distance to all adiabatic planes have been determined

for all tubes which lead to continuous tip temperatures and continuous,

zero slopes at the fin tips, the net heat transfer qi from each fin segment

may be determined from Eqs. 11.5 through Ii.i0. The exit fluid temperature

from each tube T may then be determined from
ei

qi = _ cp(Te i -To i) (11.24)

Since the main program unit requires only a single distance

between the tube centerline and the adiabatic plane, the two distances hl.
i

and h2i must be averaged to yield a single value. The averaging process

produces a value h. which results in the same heat transfer for the
i

symmetrical fin. This single value for each tube is calculated by using

equation (11.5) resulting in

h. = nlhli+ n2ih2i (11.25)

nl.+ n2.
1 1

As previously defined, the subscripts 1 and 2 denote the two

halves of the fin attached to both sides of the ith tube. Values for the

fin effectiveness are evaluated from Eq. 11.7.

The program considers the case of the radiator panel with U-shaped

tubes to be approximated by three sequential parallel tube sections.

The program first calculates the fin base temperature and the

distance to the adiabatic plane for the first section of the three tube

segments. The heat transferred from the fluid is then calculated from
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Eq. ii.I. The outlet fluid temperature from the first tube T segment is
e

then calculated from the expression

..i = (Te --T o)

The exit fluid temperature simply becomes the inlet fluid temperature to

the second tube segment (the base of the U). The same process is repeated

for the remaining two tube segments resulting in two more values for the

distance to the adiabatic plane. The single value for the distance to the

adiabatic plane necessary for entry to the main program unit is determined

from an average weighted with respect to the length of each tube segment.
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E. Property Fundamentals

The fundamental principles used to prepare the required thermo-

physical properties for inclusion into the computer code are exhibited in

this chapter while the specific details concerning the materials treated

in this program phase are placed into the appendices.

The principles involved are those of macroscopic thermodynamics

treated in most elementary texts. The approach of deriving analytic ex-

pressions for the required properties is not unique because the starting

point is dictated by the availability of experimental data. The result,

however, must be of the same form regardless of whether, for instance, the

coolant fluid is gaseous or liquid.

The properties of the structural materials are the least problematic

ones since they depend on the temperature at most; and the standard poly-

nomial collocation methods are entirely sufficient. Care must be exercised,

however, that the collocation imply continuous fourth derivatives for highest

integration efficiency or, less desirable, at least continuous representation

of the property itself which may exclude pieeewise allocation of degrees

higher than one.

What is said about the properties of structural materials holds

in principle for the description of the atmosphere whose properties depend

only on altitude. Even though the optical properties of the thermal

coating depend, in general, on wave-length and temperature, the spectral

dependence is integrated into the averaged ("gray") properties (see Eqs.

6.5 and 6), and the results are functions of one variable, the temperature.

Consequently, there remains but the discussion of the coolant fluid proper-

ties which depend strictly on two state variables.

In macroscopic thermodynamics there are required two _equations

of state for the description of a substance, namely the thermal equation

of state f(p,p,T) = 0 which relates any one of density Q, pressure p and

temperature T to the remaining two, and the caloric equation of state,

= Operhaps in the form of c° f(T) where c is the zero-pressure specific
v v

heat at constant volume. These two equations are sufficient to develop all
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of the required thermodynamic functions, namely:

(i)

(ii)

(iii)

(iv)

specific heat at constant pressure c (p,T)
P

isobaric thermal _pansion coefficient B(p,T)

isothermal bulk modulus K(p,T)

enthalpy h(p ,T)

These functions are discussed in Section 12.

The transport properties, namely the thermal conductivity k(p,T)

and the dynamic viscosity _(p,T) are correlated on the basis of residuals

as explained in Section 13. The properties of the atmosphere are dealt

with in Section 14.
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12. Thermodynamic Properties

The first step in developing thermodynamic properties is to secure

a thermal equation of state

f(p,p,T) = 0 (12.i)

For almost all pure gases and air, this equation can be found in the litera-

ture, either in the form suggested by Benedict-Webb-Rubin (virial expansion)

or in that suggested by Beattie-Bridgeman. Both equations are explicit in p,

P = p(p,T) (12,2)

so that K is im_nediately obtained from Eq. 11.2 by implicit differentiation

P T

which can be evaluated as K(p,T) after inversion of Eq. 11.2 into

P = p(p,T)
(12.4)

The inversion of Eq. 12.2 is facilitated by computing (3p/3p)T from

Eq. 11.2 and subsequently applying the Newton-Raphson method along the

specified isotherm with temperature T in Eq. 12.4

The isobaric thermal expansion coefficient

is also obtained by implicit differentiation of Eq. 12.2 while keeping the

left-hand side constant.

After having collocated the zero-pressure specific heat at constant

o

volume; that is, cv (T) by a power polynomial in T, one obtains first the

specific heat at constant volume
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c (p,T)= c°
v v (_) - _

(12.57

and then the specific heat at constant pressure

TB 2
c (p,T)= c (p,T) +
P v p< (12.67

The derivative in Eq. 12.5 is obtained from Eq. !2.2; and 8 and K are both

function of p or p and T.

Finally the enthalpy h is calculated from its definition

h (p, T) = p + u (p T)
p (12.7)

where the internal energy u may be obtained by two successive integrations,

the first one along an isotherm (over p), and the second one along an iso-

chore (over T) :

u = U(Po,To) + ev(P',T')d 'dT' + P K 2

To fo _o (P')

Liquids can be treated, in principle, as gases; except that the

equation of state, Eq. 12.1, is rarely available. One may find, with little

difficulty the zero-pressure isobaric expansion coefficient 8o = c(T), and

then represent adequately the isothermal bulk modulus by

K(p,T) = a(T) + B(T) p

Under any circumstances, one must satisfy

(4+
P

(12.9)

(12. ]0)
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which yields, form Eq. 12.9

B(p,T) = -a'p - --
b' 2
2 p + c (12.zz)

where primes indicate differentiation with respect to T, of the polynomials

a(T) and b(T) in Eq. 12.9. Equations 12.9 and II yield for the density

p(pT) = p(0,T O )e

T

1
[a(T)p + _ b(T)p 2 fc(Y')dT']

To (12.12)

The specific heats and the enthalpy are to be derived as for gases (see Eqs.

12.6 and 7). Other possibilities are to develop K from the speed of sound

and the ratio of specific heats; but the reader is warned not to imply

K = 0 or c = c , unless there is sufficient evidence to support these
p v

assumptions.
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13. Transport Properties

While the thermal conductivity k and the dynamic viscosity _ of

liquids may often times be adequately represented by functions of tempera-

ture T alone (facilitated by polynomial collocation), these same properties

for gases depend on density as well. It is recognized that the difference,

or residue

91(p) = k(p,T) - k*(T) (13.I)

between the thermal conductivity k(p,T) and the low-pressure thermal con-

ductivity k*(T) depends only on the density. Similarly, for the dynamic

viscosity

= - . (13.2)

Hence k and _ can be represented by the sum of two polynomials, one in P

and the other in T, The residuals _I and @2 are published for a number of

gases or may be developed from property data (Ref. 19 for N 2 and He).
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14. Atmospheric Properties

For the prediction of aerodynamic heat fluxes incident on the

radiator system during ascent and reentry (see Section 7) the evaluation

of the following atmospheric properties are required:

Temperature

ere ssure

Density

Molecular Weight

Speed of Sound

Viscosity

Thermal Conductivity

Specific Heat at Constant Pressure

Enthalpy

The model for these atmospheric properties is presented in two

sections. The first covers altitudes from sea-level to 301,000 feet.

Within this range the molecular weight is assumed to be constant and the

temperature variation with altitude is a sequence of connected line segments.

The second section of the model covers altitudes above 301,000 feet where

the molecular weight decreases linearly with altitude. For this altitude

range the approximate polynomial expressions for density and pressure sug-

gested in Part 4 of Ref. 20 were used. Errors between the values given by

the approximate expression and the 1962 Standard Model are less than 5%

over the entire range of altitudes.

Atmospheric air is assumed to be an ideal gas for all altitudes.

Therefore compressibility effects at low altitudes are neglected. The error

in computed densities resulting from the ideal gas assumption may be as high

as 0.05% for altitudes below 6 miles, but becomes less than 0.01% above 12

miles (Ref. 20). The air is also assumed to be in hydrostatic equilibrium.

All properties except geopotential altitude, specific heat and

enthalpy are evaluated from expressions presented in Refs. 20 and 21. The

expression for geopotential altitude was taken from Ref. 22, while specific

heat and enthalpy data were taken from Ref. 23.
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The model developed for the atmospheric properties is considered

to be applied to altitudes Up to i00 miles and to latitudes between 30 and

60°N. It is anticipated that atmospheric properties are not needed for

altitudes exceeding I00 miles, because the convective heat flux from the

fin system will be negligible at this altitude and above.

The properties for the earth's atmosphere are knownwith increased

uncertainty as the altitude increases. In fact, the 1962 Standard Atmosphere

(Ref. 21) consists of four regions as follows:

0 - 20 km Standard

20 - 32 km Proposed Standard
32 - 90 1_n Tentative

90 - 700 km Speculative

Any uncertainty in the atmospheric properties will naturally be
reflected as an error in the convective heat flux on the shuttle vehicle.

Fortunately during the ascent phase of the shuttle operation the convective

flux from the radiator system is fairly small compared to the radiative

flux by the time the shuttle has approached altitudes for which the atmos-

pheric properties are considered to be "speculative"; on the other hand

during re-entry, significant convective fluxes are known to exist at alti-
tudes above 90 km. As a result every effort should be made to revise the

existing atmospheric property model at high altitudes as new data become
available.

The atmospheric model is based on several primary constants.

The sea-level pressure, temperature, molecular weight, density and acceler-

ation of gravity and the universal gas constant were assigned the fixed
values of

P = 2116.22 ibf/ft 2
o

T = 518.67 R
o

M = 28.9644
O

P = 0.07647 Ibm/ft 3

o 2

go = 32.1741 ft/sec

R* = 1545.31 ft lbf/lb mole R
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Properties for Altitudes Less than 301,000 feet.

a. Geopotential Altitude - H

The state variables for air are expressed in terms of the single

variable, the geopotential altitude

Z

H = l dz

7 go

O

Z - 1.573126 x 10-7Z 2 + 2.4656553 x 10 -14 Z 3

- 3.8667054 x 10-21Z 4 + 6.0621354 x I0-28Z 5

- 9.5013649 x I0-35Z 6
(14.1)

where Z is the geometric altitude in meters, go is the acceleration of gravity

at sea-level and g(Z) denotes the local acceleration of gravity. See Ref. 22

for details.

b. Temperature - T

The general expression of the temperature as a function of geopoten-

tial altitude is

T = Tb + L(H - H b) (14.2)

Tb and Hb are the endpoints of straight-line segments representing T(H) and

are listed, together with L(H) in the following table.

c. Molecular Weight - M

The molecular weight is constant at a value of 28.9644.

d. Pressure - P

Within a region where the temperature varies linearly, the ideal

equation of state and the hydrostatic yield the following expressions for
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120

Hb L Tb

(km) (K/km) (K)

0 288.15

6.5

ii 216.65

0.0

20 216.65

1.0

32 228.65

2.8

47 270.65

0.0

52 270.65

-2.0

61 252.65

-4.0

79 180.65

0.0

90 180.65

TABLE 4. Lapse Rate and Base Temperatures for

Atmospheric Model
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pressure:

Pb Tb + L(H - _)

goMo

R*L

(L # 0) (14.3)

P_ = [ goMo(H - _ ) ]Pb exp - _T b
(L _ O) (14.4)

i.e ii < H < 20 km

47 < H < 52 km

79 < H < 90 km

The subscript "o" denotes a quantity evaluated at sea-level and the subscript

"b" denotes a quantity evaluated at the base of one of the straight line seg-

ments of the atmospheric model.

c. Density - 0

The density may be calculated from the ideal equation of state once

the temperature and pressure have been evaluated.

MP

P = R*T (14,5)

f. Speed of Sound - c

The speed of sound was evaluated from the expression

C

1/2

Y M
(14.6)
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For altitudes less than 301,000 feet the ratio of specific heats is
taken to have a fixed value of 1.40.

g. Viscosity -

The dynamic viscosity was evaluated from the expression

where

and

BT3/2
T+S

= 1.458 x i0 -6_ kg
sec m(K)I/2

S = ii0.4 K

(14.7)

h. Specific Heat at Constant Pressure c and Enthalpy iP
Values for c and i between the temperatures of i00 R and 6400 R

P
were taken from the standard Gas Tables (Ref. 23) and placed in the Program

in tabular form. A value of c and i at any temperature intermediate to a
P

pair of tabular values was determined by an interpolation routine (see

Section _II 4).
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Properties for Altitudes Greater than 301,000 Feet

a. Pressure - P

The pressure for altitudes between 301,000 and 528,000 feet is based

on the polynomial approximation given in Part IV of Ref. 20. The pressure is

written in terms of the sea-level pressure P in the form
o

li

o (14.8)
_=O

where Z is the geometric altitude and values for A
n

Ref. 20.

appear in Table 4.1 of

b. Density - p

The density is written in terms of a similar polynomial

P = Po l E [BnZn]-4 1
_=O

(14.9)

where values of B appear in Table 4.1 of Ref. 20.
n

c. Molecular Weight - M

The molecular weight is assumed to vary linearly with altitude Z

(see Fig. 1.2.7 in Ref. 21). The resulting expression for M is

M = 28.9644 0.030949 (Z - 90)

whre Z is in km.

d. Temperature - T

The temperature is calculated from the values for pressure, density

and molecular weight indicated above from the ideal equation of state
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e. Speedof Sound- c

For altitudes greater than 301,000 feet the equation for the speed

of sound is the sameone as used for the lower altitudes, but the ratio of

the specific heats is no longer assumedto be equal to 1.40. The ratio of

the specific heats varies with the molecular weight according to the expression

c
p

y =
c - R*/M
P

b

The remaining properties are calculated using identical expressions

to those outlined for altitudes less than 301,000 feet.
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III. NUMERICALTECHNIQUES

I. Introduction

The analysis carried out in Chapter II lead, as far as the mathematical

problem formulation is concerned, to three initial value problems and one

matrix manipulation. The three initial-value problems are to establish

(i) the initial conditions for the coolant fluid, defined by

Eqs. 3.42 through 3.45,

(ii) the dynamics of the coolant flow, defined by Eqs. 3.40 through

42 and 44,

(iii) the temperature field throughout the system, defined by Eqs.2.18

through 2.22 for the fin, Eqs. 3.39 and 46 for the coolant, Eqs.

4.6, 7 and 8 for the channel wall, Eqs. 4.7, 5.3 and 5 for the

protection layer, or Eq. 4.11 replacing Eqs. 2.19, 4.6, 7 and

8 and 5.3 and 5 in the case where Eq. 4.9 is satisfied. These

equations must be supplemented by the specification of the ini-

tial, non-dimensional temperature everywhere in the system.

Each initial-value problem is solved by a fourth-order Runge-Kutta-Simpson

integration discussed in Section III-2.

The radiosity equation, Eq. 6.17 requires the matrix manipulation, namely

either the solution of a system of linear algebraic equations, or a matrix

inversion whenever the optical properties of the thermal control coating are

considered temperature independent. Either task is accomplished by elementary

row operations which transform, in a single process, the augmented coefficient

matrix into a row-reduced echelon matrix. The reader is referred for this

trnasformation to standard texts on linear algebra (Ref. 9).

Additional mathematical operations are programmed as subprogramswhich

may be generally applied and which are discussed in Sections III-3 through III-7 in

this order: an evaluation of polynomials in one variable, an Aitken inter-

polation, first and second differentiation, definite integration and integration

with variable upper integration limit for functions of equally spaced arguments_

and solution to system of linear algebraic equations.
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2. The Runge-Kutta'Simpsonlntegration

Two types of initial-value problems are to be solved in this program.

The first type includes Item (i) and (ii) mentioned in the Introduction, namely

the fluid dynamics exclusive of the transient fluid temperature field, and in-

volves ordinary, first-order differential equations, linear in the derivatives

with respect to the axial distance _, that is Eqs. 3.42, 43 and 44. The equa-

tions are solved explicitly for these derivatives so as to take on the general

form of Eq. 2.1:

dY i

dx - fi(x'Yl'Y2 '''''yn ) (2.1)

Yi(0) = ai , i = 1,2,..., N (2.2)

Equation 2.2 constitutes the appropriate initial conditions. The other type

of inltial-values problem, mentioned as item (iii) in the Introduction, in-

volves partial differential equations which are linear and of the first order

in the time-derivatives; moreover, all equations, Eqs. 2.18, 3.46, 4.8 and 5.3,

are explicit in the time derivatives. Having subdivided the radiator system

into intervals, equally spaced in each appropriate domain (fluid, wall, fin,

etc.), and then written the different equations corresponding to each one of

the resulting N interior nodal points, one may discretize the spatial deriva-

tives occurring on the right-hand sides of the partial differential equations.

The result is a set of ordinary differential equations, with time as the inde-

pendent variable but of a form which is identical to Eq. 2.1. Equation 2.2

is given by the initial temperature distribution; a uniform temperature was

chosen for the first start of the integration (ai = a; i = i, 2, ..., N), sub-

sequent integrations during optimization runs are expected to start from the

previously computed steady-state temperature distributions. The boundary con-

ditions may be satisfied in three different ways. Either, the temperatures

are Computed directly from the finite-difference equation representing the

boundary conditions at the end of every time step, or secondly, the boundary

conditions may be included into the system of Eqs. 2.1 after differentiation
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with respect to time, or lastly, an equation of the form of Eqs. 2.1 may

be derived directly from a control volume boundedat one side by the boundary
of interest. All three possibilities have been utilized.

Discretization introduces obviously a truncation error; all spatial

derivatives are represented consistently with a truncation error proportional

to the square of the local spatial interval (see Sect. III 5) but higher order

terms may be included anytime by modifying a single program unit each for the
first and second derivatives.

The system of Eqs. 2.1 and 2.2 is solved by a fourth-order Runge-Kutta
integration, that is if the f. in Eqs. 2.1 have continuous fourth-order deriva-i
tives, the time-related accuracy of the integration is of order four (Refs. 26

and 27). Under muchweaker conditions, namely uniform Lipschitz continuity,

Ref. 26, the accuracy is still first-order and stability is secured. It may

be noted that the Lipschitz continuity is also the prerequisite for unique-
ness of the solution to Eqs. 2.1.

An existing single-precision , floating-point Runge-Kutta-Simpson subprograms
SUBROUTINERKS, written by R. Schubert at the Aerospace Corporation was used.

Its fixed-step integration modewas employed for the integration of the fluid

flow variables along the channel axis, while the transient temperature field

was integrated with variable time steps, chosen automatically so as to keep

the "truncation error" per time step below a specified limit. The absolute

and relative errors Ai and R.i are specified, by the user, for each variable
Yi' and after every Runge-Kutta integration step a Simpsonintegration is
carried out over the sameinterval and with the intermediate derivatives as

used in the former integration. From the difference D. between the two inte-
i

grations is calculated the "truncation error" measure

E = maxE.=m i , i=l,..., N

and if 0.75 < E then the time step DEL is divided by 5I/_ and the step ism
repeated, if 0.075 < E < 0.75 then DEL is multiplied by5 1/_ for the

m --

(2.3)
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subsequent step.

All variables Yi are set equal to their initial values in the Program
which calls RKS. During the integration RKSinteracts directly with two other

subroutines, namely DERIVand CNTRL,whosenamesare the first elements of

the argument list in the call statement. The first subroutine, DERIV, serves

to compute all N derivates dYi/dx in accordance with Eqs. 2.1 The second
subroutine, CNTRL,controls the output during integration and the termination

of integration. Output of current values of all variables along with impor-

tant system parameters is provided under two different integration modes:

general transient system simulation, MST_R= 0 in NAMELIST/RUN_PT/,produces

output in arbitrarily chosen, fixed time steps, DTWRTE,up to the final time

TEND,both specified in NAMELIST/RUN_PT/and in hours; the second modeserves

to compute the steady-state conditions and is invoked by setting MST@R= i

and by specifying the numberLIMWRTof time intervals DTWRTEat which output
is desired.

The integration under the second mode (MST@R= i) is terminated as soon

as the expected truncation error due to program termination is less than five

times the specified relative error per time step, RLIMIT, that is R. in Eq.i
2.3. The largest truncation error associated with the j-th time step is

anticipated on the basis of Eqs. i.i and 2 in Section II as follows

= max 6 = max
6j i i,j i

A.T
J

Yi,j

_n Yi,j - 1

Yi,j

i = 1,2,..., N (2.4)

The maximum is taken from all N modal points, A.T is the current integration
J

step size with index j, and Yi stands for the dYi/dx in Eqs. 2.1.

The argument list of RKS (and RKSF) is as follows:

(i)

(ii)

DERIV, name of derivative subroutine

CNTRL, name of control subroutine I

declared as EXTERNAL

in calling program
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(iii)

(iv)

(v)

(vi)

(vii)

Y , array name*, containing the Yi'S in Eqs. 2.2 **

DY, array name*, containing the dYi/dx in Eqs. 2.1

A , array name*, containing the A.'s in Eq. 2.3 **
l

R , array name*, containing the R.'s in Eq, 2.3 **
1

T , the independent variable X in Eqs. 2.1 **

(viii) DEL, the integration step**, DEL # 0

N , (integer) the number of equations**(ix)

(x)

(xi)

(xii)

IFVD = 0 :

= I:

IBKP = 0 :

= i:

NTRY = i:

=2:

=3:

=4:

variable step size**, see Eq. 2.3

fixed step size equal to DEL

adjust step size at most once before repeat,**

adjust in accordance to Eq. 2.3

continue integration**, normal start

return from RKS

repeat last step with new DEL

restart

(xiii) IERR = 0, normal integration

= -i indicates singularity when IFVD = 0

to be changed

in

CNTRL

= +i indicates denominator vanishes in Eq. 2.3 at some

time during integration.

(xiv) through (xx) are array names* with which the user need not be

concerned except YS that contains the y_s in 2.1 at

the previous times step: DELY, PD, SD, YS, YST, DYST, YSIMP.

The SUBROUTINE DERIV communicates with RKS only via its argument list which

contains, in this order, Y, DY, and T, as specified above under iii, iv, and

vii. Here, the current values of Y and T are supplied to DERIV, and the corres-

ponding values of DY returned by DERIV to RKS.

The SUBROUTINE CNTRL communicates with RKS also via its argument list.

It contains Y, DY, DEL, T, NTRY, IFVD as specified above under iii, iv, viii,

vii, xii and x, respectively. From the array Y are available for output all

the results of integration. The time step may be modified to reach a specific

time value; and by specifying NTRY one controls the integration process from

Declared in calling program as array with dimension size equal to the

number of differential equations.

To be specified prior to the calling statement.
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variable to fixed step size during the integration by resetting IFVD.

This completes the discussion of the integration of both ordinary and

partial differential equations as they occur in the analysis developed in

Chapter II. The discussion is deemedsufficient to enable the user to apply

the RKSroutine to other problems as well.
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, The Evaluation of POlynomials

All polynomials

z = ao + alx +a2x2 + "'" + aNxN (3.1)

are carried out in a function subprogram based on the simple, efficient recur-

rence relation

Zo = aN

zi+ I = x • z° + al i+l

i = 0,I,..., N-I (3.2)

z = zN

The coefficients a, i = 0, i, ...,N must be placed, in the calling program,

into an array of dimension (N + i), N is an arbitrary positive integer.

The procedure is coded as a function subprogram called PCLY(N,A,X), where

X is the argument x in Eq. 3.1, A is the array containing M = N + i elements

starting with A(1) = a0.
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4. Aitken Interpolation

Experimental data and supporting computer results which are notrepre-

sented by analytic expressions are interpolated by Aitkens interpolation

technique (Ref. 27). An (n + l)-point Largangian interpolation is reduced

to a sequence of i/2 n (n + i) linear interPolations. The interval spacing

is arbitrary; and any number M > n of ordered pairs (xi,Yi) can be supplied

in the calling program. The n points of interpolation are spaced equally

about the point x of interpolation. It should be noted, however that unless

n = N or n = 2 the result y(x) is not continuous in general. Care must also

be taken that all nodes Xl,X2, ... are distinct.

The procedure is coded asa function subprogram called YINT(X,Y,M,N,P),

where X and Y are the names of arrays that have the same dimension M and

contain the ordered pairs(xi,Yi), i = 1,2,..., M such that xI < x2 < ... xM.

The number n of points used for the interpolation is specified as N, and the

value of x at which to interpolate is supplied as P. Note that 2 _ N _ M

must be satisfied.
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5. Numerical Differentiation

The first and second derivative of tabulated functions of equally spaced

arguments is carried out in SUBROUTINE DDX(Y,DY,DX,N) and in SUBROUTINE

D2DX2(Y,D2Y,DX,N), respectively. Each subroutine requires that two arrays

be declared in a DIMENSION statement in the calling program, to have a_ least

N elements; one array for the set of ordinates Y ÷ Yi supplied by the calling

program, the other array for the return of the results, that is DY ÷ dYi/dx

D2Y ÷ d2yi/dx 2. The argument interval Ax and the number of ordinancesor Yi

are to be specified as DX and N, respectively. However, in order that terms

of order Ax be retained including at the endpoints of the domain, N must be

,,,
no less than 3 for DDX and 4 for D2DX2. The truncation error is of order y

(Ax) 2 and yIV(Ax)2 respectively, for DDX and D2DX2



101

6. Numerical Integration

The definite integral

F = fy (xi) dx
, 1_< i!N; N> 2

and the indefinite integral

xj
1.

JY(Xi) dx + G(Xl)
G.
3

1 <_ i_< N ; 1 < j <__N ; N > 3

of a tabulated function Yi of an equally spaced argument, xi,

xI + Ax, xI + 2 Ax, ....,xI + (N - l)Ax is carried out by a modified Simpson

integration in the FUNCTI@N DEFINT(Y,DX,N) Subprogram and in the SUBR_!fflNE

FINT(Y,YO,DX,N,F), respectively.

For DEFINT the ordinates Yi are to be placed in the array Y whose dimen-

sion of no less than N elements must be declared in the calling program. The

argument interval and the number of ordinates are specified as DX and N,

respectively.

For FINT there are two array declarations necessary in the calling pro-

gram, both for at least N elements; one for the integrand Y + Yi and the

other for the integral F ÷ Gi. The integration constant G(Xl) , the argument

interval and the number of ordinates are to be supplied as YO, DX and N,

respectively.

The truncation error of composite Simpson integration is

.....Xl _ xN (iv)
180 (Ax)4 y ' (C) with xI ! (_) !XN •
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7. Solution to Systems of Linear Algebraic Equations

Systems of linear algebraic equations are solved by the Gauss-

Jordan elimination process. The same technique is used to invert matrices•

Consider the system of n linear algebraic equations

n

AijXj = Yi "
j=l

The solution is obtained by performing that sequence of elementary

row operations on the augmented coefficient matrix

All AI2

A21

Anl

Aln Yl

. Y2

A
nn Yn

which leads to the row-reduced echelon matrix

i

0

0

1

0

0 0

0 xI

x 2

0

i x
n

Elementary row operations are defined by

(i) multiplication of a row by the scalar c # 0

(ii) replacement of the r-th row by the r-th row plus c times

the s-th row; c # 0, r _ s; r,s < n

(iii) interchange of any two rows.
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The augmentedcoefficient matrix consists of the coefficient matrix Aij in the
first n columns and the known column vector Yi in its last, (n+l)-st column.
The row-reduced echelon matrix has the properties that

(i) the first non-zero element in each non-zero row is i,

(ii) every zero-row occurs below every non-zero row,

(iii) if the first r rows, i -- 1,2, ..., r have their non-zero
entry in column ki then the k.'s satisfy kI < k2 < ... < k1 r"

In our specific case, the row-reduced echelon matrix has the identity matrix

in place of the coefficient matrix.

When a matrix is inverted then the augmented coefficient matrix

consists of the n x n coefficient matrix in its first n columns and the n x n

identity matrix in the second n columns, j = n+l, n+2, ..., 2n. The process

indicated above leads n x n identity matrix in the first n columns and

the inverted coefficient matrix in the second n columns, from j = n+l through

j = 2n.

The particular elementary row operations required are

(i) division of the i-th row by Aii ,

(ii) subsequent multiplication of the resulting i-th row by the

element _i of the k-th row,

(iii) and subsequent replacement of the k-th row by the difference

between the k-th row and the i-th row.

This process has to be repeated, essentially, for each row i = i, ..., n.
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IV RECOMMENDATIONSANDCONCLUSIONS

The analysis described in this report has been successful in

simulating the transient heat transfer characteristics of a radiator

system under operational conditions expected in flight. The analysis

serves as a basis for a rigorous computer program that has been system-

atically sub-divided into modular subprograms. The modular concept

facilitates repeated simulation runs with different structural materials,

meteoroid protection material, coolant fluids, and thermal control

ceatings.

The program predicts the net system heat rejection, the fin, tube

and fluid temperature profiles, fluid pressure field as well as the

meteoroid protection layer thickness and mass of the entire system.

Optimization of the system performance may be achieved through enumeration

of the parameter sets.

The program has been thoroughly checked and run for a large number

of different simulation cases. A sample representation of these cases

may be found in reference [29]. These sample runs have aided in the

design of the radiator system during ascent, reentry, transient orbital

and steady state orbital conditions. As a result of these computer

runs it is recommendedthat an unprotected radiator not be used during

reentry phases of the shuttle operation, because during reentry the

aerodynamic heating has been found to exceed the ability of the radiator

to reject heat. Also experience gained from the sample runs has shown

that the rigorous analysis should not be used for parameter studies

of the heat rejection system until a satisfactory optimum domain has

been identified by the use of the Simplified Analysis [30].

Displays of typical results are presented in that report.
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APPENDIXA

STRUCTURALMATERIALPROPERTIES
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The thermodynamic and mechanical properties of all materials which

make up the radiator system are summarized in Appendices A through C.

Appendix A contains properties for the three structural materials:

copper, aluminum and beryllium. Copper and aluminum are intended to be used

primarily as fin and tube material, while beryllium was selected for a

meteoroid protection material. Four properties are evaluated for each

material: specific heat at constant pressure, thermal conductivity, modulus

of elasticity, while (l/k) (dk/dT) is computed by differentiating the thermal

conductivity relationship with respect to temperature.

Appendix B contains properties for four coolant fluids: helium,

Dow Corning 200 Silicon oil, the liquid metal NaK, and two 3-M Company

fluorochemical liquids FC-43 and FC-75. Six properties are evaluated for

each coolant fluid: isobaric thermal expansion coefficient, isothermal

compressibility, specific heat at constant pressure, enthalpy, thermal

conductivity and dynamic viscosity. In addition, two equations of state are

included for each fluid, one explicitly in density and one explicit in

pressure, while the property (l/k) (dk/dT) is computed by differentiating

the thermal conductivity relationship with respect to temperature.

Appendix C contains the total hemispherical emittance and two

auxiliary radiative properties used in the program for the surface coating

Z-93.

All property relationships listed in these Appendices are prssented

in analytical form obtained by fitting a power polynomial through the data

points. The data points listed in the tables are taken from the reference

entered before each table. Numerical techniques used for the curve fitting

process are explained in Section III.

The polynomial expression for each property has been compared with

the referenced data and within the listed temperature range has been found

to deviate by no more than the percentage error indicated.
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I. COPPER

i, Specific Heat

Reference: Touloukian, Y. S., "Thermophysical Properties of High

Temperature Solid Materials," Thermophysical Properties Research

Center, Purdue University, Vol. I, 1967, pp. 456-7.

Data Points:

T C
P

600 R 0.0920 Btu/(ibm R)

i000 0.0975

2000 0.1112

Polynomial Fit:

Temperature Range: 400 to 2000 R

Equation:

C (0.08375 + 1.375 x 10 -5 TR "I)= x 32.174 Btu/(slug R) (A.I)
P

Maximum Error: There was no difference between the Computed value

and the input data within the accuracy of the computer.

. Thermal Conductivity

Reference: Touloukian, Y. S., "Thermophysical Properties of High

Temperature Solid Materials," Thermophysical Properties Research

Center, Purdue University, Vol. i, 1967, pp. 458-9.
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Data Points:

T k

600 R 228.369

800 225.708

i000 222.805

1200 219.418

1400 215.306

i

Btu/(hr ft R)

Polynomial Fit:

Temperature Range: 500 to 1800 R

Equation:

k = (228.369 - 2.62067 e - 0.04033 e3) Btu/(hr ft R) (A,2)

where

Maximum Error : 0.87%

T - 600.0R

200 .OR
(A.3)

3. Temperature Variation of Thermal Conductivity

Eq. A.2 was differentiated with respect to temperature to yield

dk = i (-2.62067 - 0.121 e2) R-I

k dT 200 (228.369 - 2.62067 e - 0.04033 83 )

4. Modulus Elasticity:

Reference: "MaterialManual," TRW Equipment Laboratories, February

1966, Report No. ER-6756, Contract No. NAS 9-4884, Fig. 50.

(A.4)



109

Data Points:

t Y

0 F

4OO

8OO

1200

16.55 x 106 ibf/in 2

14.35

9.65

3.82

Polynomial Fit:

Temperature Range:

Equation:

500 to 1600 R

Y = (16.55 - 0.4933 8 - 1.935 82 + 0.2283 e3)

X 1.44 X 108 (ib f/ft 2)
(A.5)

where

T - 459.67 R

200 R
(A.6)

Maximum Error: 0.44%
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II. ALUMINUM7075

l. Specific Heat

Reference: Touloukian, Y. S., "Thermophysical Properties of High

Temperature Solid Materials," Thermophysical Properties

Research Center, Purdue University, Vol. 2-11, 1967, pp. 810-11.

Data Points:

T c

P

400 R 0.182

600 0.209

800 0.226

i000 0.244

1200 0.270

Btu/(ibm R)

C

P

Polynomial Fit:

Temperature Range: 300 to 1200 R

Equation:

= (0.182 + 0.03616 9 - 0.011417 e2 + 0.00233 e3 - 0.000083 04 )

X 32.174 Btu/(slug R)

(A. 7)

where

T - 400 R

200 R
(A.8)

Maximum Error: 0.34%
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o Thermal Conductivity

Reference: Touloukian, Y. S., "Thermophysical Properties of High

Temperature Solid Materials," Thermophysical Properties Research

Center, Purdue University, Vol. 2-11, pp. 812-13.

Data Points:

T k

400 R 88.50

600 100.395

800 105.96

i000 104.024

1200 99.18

Btu/(hr ft R)

Polynomial Fit:

Temperature Range: 300 to 1200 R

Equation:

k = (88.5 + 13.0665 e + 0.33275 e2 - 1.758 e

Btu/(hr ft R)

where

T- 400 R
e =

200 R

3 + 0.25375 e4)

(A.9)

(A.ZO)

Maximum Error: 0.96%
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Q Temperature Variation of Thermal Conductivity

Equation A.9 was differentiated with respect to temperature to

yield

I dk

k dT (A. ii)

I (13.0665 + 0,6655 _) - 5.25 02 + 1.015 e3) R-I

200 (88.5 + 13.0665 e + 0.33275 e2 - 1,758 03 + 0.25375 04 )

. Modulus of Elasticity

Reference: "Material Manual," TRW Equipment Laboratories, February

1966, Report ER-6756, NAS 9-4884, Fig. 50.

Data Points:

t Y

0 F

200

400

600

10.71x106 ibf/in 2

9.90

8.50

6.15

Polynomial Fit:

Temperature Range:

Equation:

500 to 1200 R

Y = (10.71 - 0.63 e - 0.115 02 - 0.06 03 )

X 1.44 X 108 ibf/ft 2

(A.12)
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where

T - 459.67 R

200 R (A. 13)

Maximum Error: 0.38Z



.
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III. BERYLLIUM (1/2 - 3% Be O)

Specific Heat

Reference: Touloukian, Y. S., "Thermophysical Properties of High

Temperature Solid Materials," Thermophysical Properties Research

Center, Purdue University, Vol. 6-11, 1967, pp. 753-4.

Data Points:

T c

P

800 R 0.536

i000 0.585

1200 0.622

1400 0.652

1600 0.680

Btu/(Ibm R)

Polynomial Fit:

Temperature Range: 400 to 1700 R

Equation:

c = (0.536 + 0.05667 8 - 0.0085 82 + 0.00083 83 )
P

where

X 32.174 Btu/(slug R)

T- 800 R
8 =

200 R

(A.14)

(A.15)

Maximum Error: 0.88%



o Thermal Conductivity

Reference: Touloukian, Y. S., "Thermophysical Properties of High

Temperature Solid Materials," Thermophysical Properties Research

Center, Purdue University, Vol. 6-11, 1967, pp. 757-9.

Data Points:

T k

400 R 108.863

600 98.944

800 89.751

i000 80.80

1200 72.091

Btu/(hr ft R)

Polynomial Fit:

Temperature Range: 400 to 1700 R

Equation:

k = (108.863 - 10.5643 e + 0.82683 e2 0.20167 e3

+ 0.020167 e4) Btu/(hr ft R)

where

T - 400 R
e =

200 R

115

(A.16)

(A. 17)

o

Maximum Error: 0.90%

Temperature Variation of Thermal Conductivity

Equation A.15 was differentiated with respect to temperature to

yield
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i dk
k dT

(-10.5643 + 1.65367 e - 0.60501 62 + 0.080668 93)

(A.18)

R-1

200 (108.863 - 10.5643 9 + 0.826830 92 - 0.20167 93 + 0.020167 94 )

4. Modulus of Elasticity

Reference: "Material Manual," TRW Equipment Laboratories, February

1966, Report ER-6756, Contract Noo NAS 9-4885, Fig 51.

Data Points:

t Y

0 F 44.36 x 106 lbf/in 2

400 40.41

800 33.95

1200 21.80

Polynomial Fit:

Temperature Range:

Equation:

where

500 to 1700 R

Y = (44.36 - 3. 755 9 + 0.335 92 - 0.53 93 )

X 1.44 X 108 ibf/ft 2

(A.19)

T - 459.67 R

400 R
(A. 20)

Maximum Error: 0.28%
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APPENDIX B

COOLANT FLUID PROPERTIES
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I. HELIUM

. Equation of State Explicit in Pressure

Reference: Akin, S. W., Trans. ASME, Vol. 72, p. 751, 1950.

This reference was used for all Helium properties and for brevity it

is not repeated as the reference for the properties listed below.

Equation: The National Bureau of Standards has published a Bendict-

Webb-Rubin equation for helium; this equation was found to be

valid only up to the specified pressure limit of 3000 ibf/in 2.

Preference was therefore given to the following Beattie-Bridgeman

equa tion :

2 1

p = p [RT(I - _)(F + BI) - A] (B.I)

where
C

=TP

A = AI(I - a p)

The values of the constants in Eq. B.I, in MKSA units, are:

R = 2.07702 x 103 Nm/kgk

A l = 1.369595 x 102 Nm4/kg 2

Bl = 3.5002295 x 10 -3 m3/kg

C = 1.0000658 x i01 km3/kg

a = 1.496103 x 10 -2 m3/kg

Temperature Range: 160 to 860 R

Pressure Range: 2116 to 360000
2

ibf/ft

Maximum Error: 0.095%

. Equation of State Explicit in Density

Since the equation of state is needed explicit in density, Eq. B.I

was solved using Newton-Raphson iteration method along an isotherm to

give
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p - p(pi)

Pi+l : Pi (_P/_P)T
(B.2)

Using Eq. B.I, one obtains

CR) a CRBI 2
(_)T = RT + 2(RBIT - AI - 7 p + 3(A I 7 ")p

(B.3)

o Isobaric Thermal Expansion Coefficient

The isobaric thermal expansion coefficient is defined by the

equation

i _p

P

(B.4)

Since the equation of state (Eq. B.I) is explicit in the pressure,

one can write 8 as:

1 (_pl_T)p

P (gP/_P)T
(B.5)

o

or

2C 2CBI 3]
R[p + (B1 +7 )p2 + T3 P

o[RT + 2p(RBIT - A 1

CR CRBI

r2 ) + 3p2(AI a T 2 )]

Isothermal Compressibility

The isothermal compressibility is defined by the equation

(B.6)
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K = - (B.7)
P

Making use of Eq. B.3, the isothermal compressibility can be written as

CR CRBI

K = I/p[RT + 2p(RBIT - A 1 - T-_ ) + 3p2(Al a - --_--)]
(B,8)

. Specific Heat at Constant Pressure:

Equation: Experimental and quantum statistical data for helium show

that at zero-pressure, the specific heat at constant volume is

independent of temperature

o 3
c = -- R (B.9)
v 2

Using Maxwell's equations, the following expression is obtained

P 2

Gv = C ° - Tf /_-_-)p dp'
v 7p o _ _r2 (p ,)2

(B.IO)

From the equation of state, (Eq. B.I) the integration is carried

out in closed form to give

G =R[ 3 p
v 2 + 6a (i + _ BI) ]

(B.II)

The relation between specific heat at constant pressure and that

at constant volume is given by:

C ----C
p v

TB 2
+--

pK
(B.12)
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Temperature Range: 180 to 900 R

Pressure Range: 2116 to 216000 ibf/ft

MaximumError: 0.58% for cp

, Enthalpy

The variation of internal energy with both temperature and density

is

du = c dT + [P - T(_T)v ] J_ "

P P

Substitution of c from Eq. B.II and equation of state data from Eq.
V

B.I followed by integration along an isochore and an isotherm, one

obtains

+ R 3 BI ( 1 I__) (3 R C
u = u° [_ (r - To) + 3 P C (i +_) T 2 - T 2 ] + T 2

o

-- + A I)

3 C RB II

(p° - p) +_ ( T 2
A 1 a)(Po 2 - p2)

where u = 3.992 x i04 j/kg
O

T = 10.938889 K
O

Po = 4.669193 kg/m 3

with T in K and u in j/kg.

The enthalpy may then be determined from the equation

7. Thermal Conductivity

Data Points:

h=u+ p
P
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T k

160 R 0.0404

360 0.0676

560 0.090

760 0.1094

Btu/(hr ft R)

Polynomial Fit:

Temperature Range:

Equation:

160 to 860 R

k = (0.0404 + 0.0302 e - 0.0033 e2 + 0.0003 03) Btu/(hr ft R) (B.13)

where

T- 160 R
e =

200 R

Maximum Error: 0.54%

8. Temperature Variation of Thermal Conductivity

Eq. B. 13 was differentiated with respect to temperature to yield

! dk = i (0.0302 - 0.0066 e + 0.0009 82 ) ! (B.14)

k dT 200 (0.0404 + 0.0302 8 - 0.0033 82 + 0.0003 83 ) R

, Dynamic Viscosity

Equation: Viscosity correlations are usually based on the concept of

residual viscosity:

_l(p) = _(o,T) - _ (T) (B.15)
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where

is the residual viscosity (function of density alone).

is the dynamic viscosity at atmospheric pressure.

For helium, the dynamic viscosity is given by:

* T/OR)0= _ -- (2.58394 x 10-5 .647 slug/(ft hr) (B.16)

Temperature Range: 160 to 660 R

Maximum Error: 0.29%.
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II. SILICONOIL

The following properties are for DowCorning 200 Silicon Oil (i Centistoke

at 77 F).

lo Isothermal Compressibility

Reference: Gunst, S. B., "Density-Pressure Relationships for Two

Low-Viscosity Dimethyl Siloxanes," Trans. ASME 72, May 1950,

pp. 401-7.

Data Points: Variation of K with temperature at 0 psig and 500

psig are given below:

t K K°
o 500

I00 F 12.35 x 10 -6 in2/ibf 11.60 x 10 -6 in2/ibf

150 16.05 14.94

200 20.45 18.82

250 26.25 23.86

300 36.55 31.88

Polynomial Fit:

Temperature Range: 560 to 760 R

Pressure Range: 2116 to 74116 Ibf/ft 2

Equation: The variation of <o with temperature at 0 psig is

given by

K
O

= (12.35 + 2.9833 0 + i.i 82 - 0.48333 e3 + 0.i _4)x 10 -6

in2/lbf

T- 559.67 R
where e =

50 R

(B. 17)

(B.17a)

K is assumed to vary linearly on the above range of pressure,

hence
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< = a + b p (B.18)

where

a = K
O

_< <500 - No

_P T 500 psi

(B.18a)

and p is the pressure in psig and < is in in2/ibf

Fitting a power polynomial through ( _ )T with the same values

for temperature as indicated in the table results in the equation

b = (-1.5 - 0.0133 8 - 1.18 82 + 0.57333 83 - 0.i 84) x 10 -9

(B.19)

in4/lbf 2

where 8 is given in Eq. B.17a.

Maximum Error: There was no difference between the computed

and the input data within the accuracy of the computation.

o Equation of State Explicit in Density

Reference: Gunst, S. B., "Density-Pressure Relationships for

Two Low-Viscosity Dimethyl Siloxanes, "Trans. ASME, May 1950,

pp. 401-7.

Data Points: Values for the variation of density with temperature

at 0 psig are given below:

.....................

t Po

150 F 0.7767

200 0.7479

250 0.7188

300 0.690O

g /c3
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Polynomial Fit:

Temperature Range: 540 to 760 R

Pressure Range: 2116 to 146116

Equation:

Ibf/ft 2

where

p = (0.7767 - 0.0288 e) x 1.94 slug/ft 3
o

e ___

T- 609.67 R

5O R

(B. 20)

(B.20a)

The variation of density with pressure is given by

dz = _--_-_= - 8 dT + K dp
P

(B.21)

Integration along the isotherm T = 609.67 R and from
O

p' = 0 psig to p' = p, using Eq. B.18 results in

2

z(P'To) = a(To)P + b(To) _2

Integration along the isobar p, from T' = T , to T' = T,
o

using Eq. B.25, yields

T T T

Zz(p,T)-z(P,To) = p a'(T')dT' + _-- b'(T')dT'- c(T')dT"

o o o

which after simplification reduces to

p = p
o

2
eap+½ b P (B.22)

where values for a and b are given in Eq. B.18a.

Maximum Error: 0.128%

o Equation of State Explicit in Pressure

Since the equation of state is needed explicit in pressure,

Eq. B.22 was rearranged to yield
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i +v_Jp =_ [-a +2bln-- ]
Po

(B. 23)

4. Isobaric Thermal Expansion Coefficient

The zero-pressure isobaric thermal expansion coefficient can be

written as:

1 3Po_
B°°

o p

where Po is given by Eq. B.20.

or

8

O

0.0288 i

50(0.7767 - 0.0288 0) R
(B.24)

where 8 is given by Eq, B.20a.

Making use of Eq. B.21, together with the principle of an exact

differential, one may write

T p

From Eq. B.18, the variation of _ with both pressure and

temperature is given by

b '2 2

8 = 80 - a' p --_--p (B.25)

where the prime superscript indicates differentiation with respect

to temperature. The expressions for a and b as a function of

temperature are given in Eqs. B.17 and 19, respectively.
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o Specific Heat at Constant Pressure

Reference: Dow Corning, Bulletin 05-145, February 1966.

Data Points: The available data for the variation of zero pressure

specific heat at constant pressure for 2 centistokes are:

o
t c

P

80 F 0. 448

160 0,454

240 0. 463

320 0.476

400 0.491

Btu/(ibm F)

Polynomial Fit:

Temperature Range: 540 to 860 R

Pressure Range: 2116 to 74116 ibf/ft 2

Equation: The above data for 2 centistokes silicon oil were

multiplied by the ratio of c° for i centistoke to 2 centistokes
P

at 77°F, to give the following expression for the zero-pressure

specific heat at constant pressure for i centistoke silicon oil

o
c = (0.46 + 0.00471 e + 0.00141 62 + 0.000043 e3)-
P

x 32.174 Btu/(slug R)

where

(B.26)

T - 539.67 R

e = 80 R (B.26a)

The variation of c
P

with pressure is given by

oc = c -T (7) dp'
P P

o

(B.27)

Since the exponent in Eq. B.22 is small, the equation for the density,

when expanded in a power series, may be truncated after the second



term in the expansion. Applying Eq. B.27 to the two-term

expression for density as a function of pressure and
temperature by integrating along an isotherm T from p' = 0 psig

to p' = p, results in the expression for
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where

o TI
C = C - --

P P P o
(B. 28)

2 3 4 5

I = zlp + z2p + z3p + z4p + z5p

and

zI = 2(pP--°)2
o

1 (2 00 a' - a") - azI]
z2 = _[ O7

I '2 b" Po ,) Po a") 1 2
z3 = _[a - T- + -- b - a(2 m a' - + b)Po Po _-(a - Zl]

i, ,, , 2 b" Po a' i 2 P° a")

z4 : _ta O - a(a' - 2-- +--Po ) + _(a - b)(2 moo a' -

I
+ y aDzI]

= i .b '2 - b" P?"
z5 _L T - 2a a'b' + (a2 - b)(a '2 2 + )

Po

tO._.._a' - a") + I 2

+ ab(2 Po _ b Zl]

where the prime superscript indicates differentiation with respect

to temperature. The symbol a represents the zero pressure isothermal

compressibility defined in equation B.17 and b is defined by equation

B.19.

Maximum Error: For zero pressure specific heat at constant

pressure the maximum error was 0.065%. For higher pressures no

experimental data were available for comparison. However, the
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expression for enthalpy was numerically differentiated with

respect to temperature at constant pressure and comparedwith

the computedvalues of specific heat at constant pressure°

The comparison showedno difference within the accuracy of

the computation.

. Enthalpy

The variation of enthalpy with both pressure and temperature is

given by:

o
dh = c

P

i
dT + _ [i - TB] dp

This expression was integrated along the isobar p = 0 psig from

T' = 539.65 R to T' = T, and then along an isotherm T from p' = 0 psig

to p =p, to give

h = [ 80(0.46 + 0.00471 O + 0.00141 82 + 0.000043 03 )

l 5+ P .337.37 [ - bb' T p
O

1 my
- _ (a b' + b) Tp 4

p !

I O))p3 +i
+ _ (T(b' - a a') - b(l + T P _ (a' T - a (i

o

p! p!

o p2 o+ T _-) ) + (i + T _--)p] x 32.174 }
o o

Btu/slug (B. 29)

where O is given by Eq. B.26a

T is temperature in R

a is given by Eq. B.17 in in_/ibf

p is given by Eq. B.20 in slug/ft a
o

b is given by Eq. B.19 in in_/ibf 2

p is pressure in ibf/in e

and primes denote differentiation with temperature.



. Dynamic Viscosity

Reference: Dow Corning, Bulletin 05-153, July 1966.

Data Points:

131

t

0 F 1.98 centistokes

i00 0.874

200 0.56

300 0.41

.

Polynomial Fit:

Temperature range: 460 to 760 R

Equation:

In v = (0.683 - 1.0845 8 + 0.3065 82 - 0.04 83 ) (B.30)

T - 459p67 Rwhere 8 =
i00.0 R

where 9 is in centistokes and the dynamic viscosity is

given by

_= _;p (B. 31)

Maximum Error: 0.77%

Thermal Conductivity

Reference: Dow Corning, Bulletin 05-145, February 1966.

Data Points: The available data for the variation of thermal con-

ductivity with temperature for 2 centistokes are:
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t k

i00 F 0.0674

I00 0.0626

300 0.0578

Btu/(hr ft F)

Polynomial Fit:

Temperature Range: 360 to 860 R

Equation: The procedure that was used for specific heat at constant

pressure was followed to get an expression for the
variation of thermal conductivity with temperature for

i centistoke silicon oil. The resulting expression for

the thermal conductivity is given by

k= (7.0052- 2.2105 X 10-3T/R) x 10-2 Btu/(hr ftR) (B.32)

MaximumError: There was no difference between the computed

and the input data within the.accuracy of the computation.

. Temperature Variation of Thermal Conductivity

Eq. B.32 was differentiated with respect to temperature to

yield

_ 2.2105xi0 -3

dk = i/R

k dT 7.0052 - 2.2105xlO-3T/°R)

(B. 33)
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III NAK- (78.670K)

The following physical properties of NaK(78.6 wt% K) were extracted

from the latest version of the "Liquid Metals Handbook, Sodiumand NaK

Supplement" (to be published). Sometypical properties of NaKare:

Melting Point:

Boiling Point:
Surface Tension:

92 F

1445 F

0.00739 ibf/ft at Melting point

Since all property values were taken from this single reference,
the reference is omitted in each section below.

i. Equation of State Explicit in Density

Data Points: Values for the variation of density with temperature at

zero pressure are given by

t P
O

200 F 53.21 ibm/ft3-

500 50.68

800 48.15

ii00 45.62

1400 43.09

Polynomial Fit:

Temperature Range: 660 to 1860 R

Equation:

P = (58.773064 - 0.008433 T/R)/32.174 slug/ft 3
o

(B.34)

Since the isothermal compressibility for NaK is assumed to be

independent of pressure, Eq. B22 reduces to

p = p e <p (B.35)
o
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where p is the gage pressure. Since the exponent is small, the

power series expansion for Eq. B.35 may be truncated after the

second term and the variation of density with both pressure and

temperature is given by

P = 0 (i + Kp) (B.36)
O

.

An expression for K is given later in this section.

Maximum Error: At zero pressure, there was no difference between the

computed and the input data, within the accuracy of the computation.

For higher pressures there were no experimental data available for

comparison.

Equation of State Explicit in Pressure

Since the equation of state is needed explicit in pressure, Eq. B.36

was rearranged to yield

I P
p = _ (_--- i) (B.37)

O

. Isobaric Thermal Expansion Coefficient

The isobaric thermal expansion coefficient is defined in Eq. B.4.

From Eq. B.34, the zero pressure isobaric thermal expansion coefficient

is given by:

8 = 0°008433 ! (B.38)
o (58.773064 - 0.008433TR -I) R

Due to the lack of experimental data, the isobaric thermal

expansion coefficient was assumed to be independent of pressure.
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Isothermal Compressibility

In view of the experimental difficulties associated with the

measurement of isothermal compressibility at elevated temperatures,

such data are not generally available for liquid metals. However, the

well-known relationship between velocity of sound c, density p, and

isentropic compressibility _ is
s

1

s pc2 (B .39)

which makes an alternative approach to the problem possible, if

velocities of sound can be measured. Under these circumstances the

isothermal compressibility may be obtained from the relation

ii::

K= Y_s (B.40)

where

c

y=-_
c
V

The relation between c and c
p v

is given by

TB 2
C _ C m

p v pK
(B.41)

From Eqs. B.40 and B.41, one gets

Tg 2
K = K +--

s pc
P

Or

K
O I[ITIf= 7+cp T

o

P
o

(B.42)
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Due to the lack of experimental data Eq. B.42 was evaluated at the

absolute pressure Po of one atmosphere and the temperature of

T = 1260 R.

at T
o

C
p,o

= 1260 R

P = 48.15 Ibm/ft 3
o

c = 7544 ft/sec
o

= 1.75149 x i0 -4 I/R
o

= 0.2091Btu/(lbm R)

5. Specific Heat at Constant Pressure

Data Points: For zero-pressure specific heat at constant pressure

are given by:

o
t c

P

200 F

500

80O

ii00

1400

0.2255 Btu/(ibm F)

0.1239

0.2093

0.2091

0.2120

Polynomial Fit:

Temperature Range:

Equation:

660 to 1860 R

o - 0.000758 +c = (0.2255 - 0.016292 e + 0.00539 e 2 e3
p

0.000054 e4) x 32. 174 Btu/(slug R)

(B. 44)
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where

T - 659.67 R

300 R
(B.44a)

The variation of c with pressure is given by
P

P P 32 [pl_)
o T dp '

= Cp - _T 2 P

Po

Integrating along the isotherm T from p = 0 psig to p' = p,

using Eqs. B.36 and B.38 results in

°% 2TB 2
o o

c = C

P P P o<
in (I + <p) (B.45)

Maximum Error: At zero pressure, the maximum error was 0.075%.

6. Enthalpy

The variation of enthalpy with both pressure and temperature is

given by

I [i - TB] dp
dh = Cp dT +_

The enthalpy was arbitrarily chosen to be zero near the melting point,

or T = 469.67°R. The above expression was integrated along an isobar

p = 0 psig from T' = 469.67°R to T' = T, and then along an isotherm

T from p' = 0 psig to p' = p, to give

82 83

h = [300 (0.2255 e - 0.016292 -_ + 0.00539 -_ -

Q4 Q5

0.000758-%- + 0.000054 T) +--

i - TB

p K
O

in (i + <P) x (B.46)

I

778.26 ] 32.174 Btu/slug
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where P and P are in ibm/ft 3, < is in ft2/ibf T in R, 0 is given in
O -1 O

Eq. B.44a, 6 is in R and p is gage pressure in ibf/ft 2.

7. Thermal Conductivity

Data Points:

t k

200 F 13.36 Btu/(hr ft F)

500 14.57

800 15.18

II00 15.03

1400 14.13

Polynomial Fit:

Temperature Range: 660 to 1860 R

Equation:

k = (13.36 + 1.414167 0 - 0.142083 02 - 0.069167 e3 +

0.007083 84 ) Btu/(hr ft R)

(B.47)

where

0
T - 659.67 R

30O R

Maximum Error: 0.2%

8. Temperature Variation of Thermal ConductivitM:

Eq. B.47 was differentiated with respect to temperature to yield

dk i (1.414167 - 0.2841660 0.20750102 + 0.02833203

- 300 (13.36 + 1.4141670 - 0.14208302 - 0.06916703 + 0.00708304 ) Rk dT

(B.48)
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9. Dynamic Viscosity

Data Points:

t

200 F

5OO

8OO

II00

1400

1.1316 Ibm/(ft hr)

0.746

0.534

0.411

0.340

Polynomial Fit:

Temperature Range:

Equation:

660 to 1860 R

]J = (1.316 - 0.896667 8 + 0.419833 82 - 0.102833 83 +

0.009667 04)/32.174 slug/(ft hr) (B.49)

where

T - 659.67R

300R

Maximum Error: 1.2%
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IV. FC-75 INERTFLUOROCHEMICALLIQUID

The thermodynamic and transport properties of FC-75 fluid are ex-

tracted from "3M Brand Inert Fluorochemical Liquids, 3M Company,Chemical

Division, 1965."

Due to the lack of experimental data, all properties were evaluated

at atmospheric pressure and were assumedto be pressure independent.

At one atmosphere sometypical properties are:

Nominal Boiling Point: 216 F
Pour Point: - 135 F

Surface Tension, at 77F: 15 dynes/cm

i. Equation of State

Data Points:

t 0

- 50 F 120.7

70 110o5

190 100.3

ibm/ft 3

Polynomial Fit:

Temperature Range:

Equation:

- 80 to 216 F

0 = (155.522 - 0°085 T R -I) X32o174 slug/ft 3 (B.50)

Maximum Error: There was no difference between the computed and

input data, within the accuracy of computation.
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. Isobaric Thermal Expansion Coefficient

Using the definition of the isobaric thermal expansion coefficient,

Eq. B.4, and Eq. B.50, one obtains

0.085
i

= -- (B.51)
155.522 - 0.085 T R -I

R

. Isothermal Compressibility

Since the equation of state (Eq. B.50) was assumed to be pressure

independent, the isothermal compressibility defined by Eq. B.7 was

assigned the value of zero

<-0

. Specific Heat at Constant Pressure

Data Points: The variation of the zero pressure specific heat at con-

stant pressure is given by:

t C °

P

80 ° F 0.2464

140 0.2610

200 0.2756

Btu/(ibm F)

Polynomial Fit:

Temperature Range: 70 to 210 F

Equation:

c° = (0.115082 +2.4333x 10 -4 T R -1) x 32.174
P

Btu/(slug R) (B.52)
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The variation of c with pressure is given by Eq. B.27.
P

With p independent of pressure, Eq. B.27 was integrated along
an isotherm T from p' = 0 psig to p' = p resulting in:

2B2T
c = c° p
P P P

(B.53)

A check on the magnitude of the terms in Eq. B.53, using
typical running conditions, showedthat the term 2B2TP/p was

only 0.00064%of c . Therefore, c was taken to be a function
P P

of temperature alone, namely

O

C = C

P P
(B.54)

Maximum Error: 0.025%

. Enthalpy

The variation of enthalpy with both pressure and temperature is

given by

o i
dh = c dT + -- (i - TB) dp

P @
(B.55)

This expression was integrated along the isobar p = 0 psig from

T' = T = 324.67 R to T' = T, and then along an isotherm T from p' =

0 psig to p' = p to give

I
h = [0.115082 (T - To) + _ x 2.4333 x 10-4

(T2 - T_)] x 32.174 +

P

778.26 p
(i - T _ Btu/slug

(B.56)

where P is in slug/ft 3, p is gage pressure in ibf/ft 2, T is in R and B

-i
is in R
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A check of the magnitude of the terms in Eq. B.56, using typical
running conditions, showed that the last term which accounts for the

pressure variation is only 0.00087%of h. Hence the enthalpy was taken

to be a function of temperature alone, or

i
h = [0.115082 (T - To ) + _ x 2.4333 x 10 -4

(T2 - T_)] x 32.174 Btu/slug

Maximum Error: No data for enthalpy at atmospheric pressure were

available for comparison. However, when the value of c
P

(Eq. B.52) was compared with the result of differentiation of

h with respect to temperature, there was no difference within

the accuracy of the computation.

6. Thermal Conductivity

Data Points:

(B.57)

t k

- 50 F 0.08745

50 0.0809

150 0.0744

Btu/(hr ft F)

Polynomial Fit:

Temperature Range:

Equation:

- i00 to 216 F

k = 0.114181 - 6.53 x 10 -3 T R "I Btu/(hr ft F)

Maximum Error: 0.044%

(B.58)
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. Dynamic Viscosity

Data Points: The variation of kinematic viscosity with temperature

is given by:

t

- 50 F 5.15

i0 1.74

70 0.84

130 0.50

centistokes

Polynomial Fit:

Temperature Range: - 80 to 190 F

Equation:

2
= e (1o639 - 1.312933 e + 0.25265 0

- 0.02471667 93 ) centistokes

where

e

T - 409.67 R

60 R

The dynamic viscosity is given by

(B.59)

Maximum Error: 0.82%

= vp (B.60)

; f' . ' ' , ,'.... : " : 'i '
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V. FC-43 INERT FLUROCHEMICAL LIQUID

The thermodynamic and transport properties of the FC-43 are ex-

tracted from "3M Brand Inert Fluorochemical Liquids, 3M Company, Chemical

Division, 1965."

Due to the lack of experimental data, all properties were evalua-

ted at atmospheric pressure and were assumed to be pressure independent.

At one atmosphere some typical properties are:

Nominal Boiling Point: 345 F

Pour Point: - 58 F

Surface Tension at 77F: 16 dynes/cm

i. Equation of State

Data Points:

t P

-20 F

130

280

123.6

112.15

100.75

ibm/ft 3

Polynomial Fit:

Temperature Range:

Equation:

-50 to 340 F

0 = (157.0883 - 0.076167 T R-1) x 32.174 slug/ft 3

Maximum Error: There was no difference between the computed

and input data, within the accuracy of computation.

(B. 61)
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o Isobaric Thermal Expansion Coefficient

Using the definition of the isobaric thermal expansion coefficient,

Eq. B.4, and Eq. B.61, one obtains

0.076167 I
= -i R (B.62)

157.0883 - 0.076167 r R

o Isothermal Compressibility

Since the equation of state (Eq. B.61) was assumed to be pressure

independent, the isothermal compressibility defined by Eq. B.7 was

assigned the value of zero.

** Specific Heat at Constant Pressure

Data Points: The variation of zero pressure specific heat at

constant pressure is given by:

o
c

P

40 F 0.25

77 0.27

Btu/(ibm F)

Polynomial Fit:

Temperature Range: 40 to 77 F

Equation:

o R-l)c = (-0.020092 + 5,4054 x 10 -4 T x 32.174
P

Btu/(slug R) (B.63)
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A similar procedure to that used in the case of FC-75 (See

Section B IV 4) has shownthat to a close approximation c
P

is pressure independent, or

O
c = c (B.64_
P P

Maximum Error: There was no difference between the computed and

input data within the accuracy of computation.

5. Enthalpy

The variation of enthalpy with both pressure and temperature is

given by Eq. B.55. Integration of this equation in a procedure similar

to that followed for the coolant fluid FC-75 yields

1 T 2 )] xh = [-0.020092 (r - To ) + _ x 5.4054 x IO'4(T 2 o

32.174 + P (i - TB ) Btu/slug (B.65)
778.26p

where T = 401.67 R, p is in slug/ft 3, T is in R, B is in R
O

p is gage pressure in ibf/ft 2.

-i
and

A check of the magnitude of the terms in Eq. B.64, using

typical running conditions, showed that the last term which accounts

for the pressure variation is only 0.00084% of h. Therefore the enthalpy

was taken to be a function of temperature alone or

i - T2 )]xh = [-0.020092 (T - To ) + _ x 5.4054 x 10-4(T 2 o

32.174 Btu/slug (B.66)
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MaximumError: No data for enthalpy at atmospheric pressure were
available for comparison. However, when the value of c

P
(Eq. B.63) was comparedwith the result of differentiation of

h with respect to temperature, there was no difference within

the accuracy of the computations.

6. Thermal Conductivity

Data Points:

t k

-50 F 0.0512

50 0.0487

150 0.0462

Btu/(hr ft F)

Polynomial Fit:

Temperature Range: - 58 to 250 F

Equation:

k = 0.061442 - 2.5 x 10-5 T R -I Btu/(hr ft F)

Maximum Error: 0.11%

(B.67)

o Dynamic Viscosity

Data Points: The variation of kinematic viscosity with tempera-

ture is given by:

t

-20 F

70

160

250

15.80

2.84

0.855

0.35

centistokes
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Polynomial Fit:

Temperature Range: -80 to 320 F

Equation:

= e (2.76 - 2.043483 8 + 0.362 82

- 0.034717 e3) centistokes (B.68)

where

T - 439.67 R

90 R

The dynamic viscosity is given by

IJ = _ p (B.69)

Maximum Error: 1.0%
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APPENDIXC

Optical Properties

Three optical properties are required in the radiative analysis

discussed in Chapter 6, namely the total hemispherical emittance

I _ eI (T) (T)d%e(r) - Eb(r ) Eb, x
o

(C.l)

and the two auxiliary functions (see Eqs. 6.10 and 6.11)

XX (T1, T2) = Eb(T2) f e%(T1) e%(T 2) Eb, _ (T2)dk

o

(C.2)

XXX(T1,T2,T3) = Eb(T3) ek(Tl) eE(T2) eE(T3) Eb, E (T3) dE
o

(C.3)

In view of the temperature independence of the spectral emittance

for dielectrics, the two functions XX and XXX are functions of a single

temperature, the temperature of the surface element represented by the last

subscript on the lef-hand sides of Eqs. 6.10 and 6.11:

XX(T) = Eb---_--I_ (T)d% (C.4)(T) eE 2 Eb,%

O

1 f (T)d%XXX(T) - Eb(T ) e% 3 Eb, _

o

(c.5)
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I. SURFACE COATING Z-93

The functions C.I, C.4 and C.5 of the previous section are evaluated

for the zinc oxide/potassium silicate coating Z-93 on the basis of spectral

reflectance data measured by IITRI and published in the NASA Contractor

Report No. 1420, titled Emissivity Coatings for Low-Temperature Space

Radiators, by G. R. Cunnington, J. R. Grarmner, and F. J. Smith, Lockheed

Aircraft Corp., Sunnyvale, Calif., Sept. 1969, pp. 66 through 81.

The evaluated functions defined through Eqs. C.I, 4 and 5 are

collocated by power polynomials of this form

N

°f(T) = aiTl (C.6)

i=O

For the total hemispherical emittance, a fourth degree power polynomial was

found to be satisfactory with

a 0 = 0.8990103

a I = -0.1400633 x 10-3

a 2 = 0.387900 x 10-6

a 3 = -0.3937509 x 10-9

a4 = 0.1015627 x 10-12

For the auxiliary functions XX and XXX the coefficients are

XX XXX

a0 = 0.7804112

a I = -0.5527205 x 10 -4

a 2 = 0.2530228 x 10 -6

a 3 = -0.3229181 x 10 -9

a4 = 0.8854202 x 10 -13

0.6538383

0.1144374 x 10-3

-0.2432286 x 10-7

-0.1437500 x 10-9

0.4947915 x 10 -13
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APPENDIXD

I. The Fin-To-Tube ShapeFactor

A closed-form integration for the view factor of the fin with respect

to the tube was carried out by Mr. Yao. This view factor occurs in Eqs. 6.15

and 6.16. Only the final results are given here.

The reader should recognize that someof the symbols defined below

(Eqs. D.I through 6) apply only here.

Let (xf, yf, zf) designate the position of the center of an area

element Af on the fin and Zm the sameon the tube. Let re, st and Sr represent,
respectively, the outer tube radius, the fin tip and the fin root thickness,

and let the fin height be given as H.

Then, with

2 2 (D.1)
O = xf + yf

Yf

B = arc tg x--
f

(D.2)

s - s t
r (D.3)

= arc tg 2r
c

s
r

qb = arc tg 2r
e

(D.4)

2 r2 2
a = p + e + (zf - Zm) (D°5)

r

= arc sin e (D°6)
O
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one obtains first

a-2r P cos(¢*-B) a-2r 2 cos (_+8) a-2r 2 cos (_+B)
e e e (D.7)

Z I = in a-2r p cos(¢-B) + a-2r p cos(¢_-B) -a-2r P cos (C-B)
e e e

8r 2 p2 (zt_Zm)2 + 4p2r2e a-a3

Z2 = e (D. 8)
2 (a2-4r2p 2) 3/2

e

2r P-a cos(¢*-B) 2r P-a cos(C-B)

Z3 = arc sin e ea-2r p cos(¢_-B) - arc sin (D.9)a-2r P cos(C-B)
e e

2 4r2p 2
2a(z_-Zm)2_ - a +

e (D. I0)
Z4 = 2 2

a - 4r2p
e

r P sin(¢*-B) r p sin(C-B)

Z5 = e . e (D. II)
a-2r P cos(¢*-B) a-2r P cos(C-B)

e e

The final result is

-Zl sin(_+B) ¢*-¢ + Z2Z3Z4Z 5 (D.12)SS = AA I Az 4--_ + 2_P T

This expression contains all the geometric relations that are required for

fin-channel radiative interaction. It needs to be evaluated only once for

every fin element'

The values of SS given by Eq. D-12 vary greatly depending on the fin

and tube elements under consideration. Typically the shape factor between

tube element and adjacent fin element is three to five orders of magnitudes

larger than the shape factor between tube element and the next closest fin
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element. If this large variation in shape factor is allowed to remain,

unrealistic oscillations in the fin radiosity will occur and sizeable truncation

errors will result when the radiant fluxes are integrated across the fin

surface.

To eliminate these truncation errors the local shape factor for the

root fin element is replaced by a meanvalve between two adjacent elements
which have the sameZ location. The meanvalue for the shape factor between

a tube element and its adjacent fin element is calculated from

SS= ['l-sin Y] [_o + sin 2_°2 ]
(D.13)

rather than Eq. D.12.

Expressions for ¥ and flo are:

-i Zm - Z_]

y = tan Xf ]

re [cos _o + tan _o sin _o ] - yf

r + Xfe

tan- _ = o
o
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II. Tube to Tube Shape Factor

The simplified analysis has indicated that optimum dimensions of

the radiator system will result in close tube spacing. Therefore for the

case of an optiminually designed system, the radiant interaction between

adjacent tubes must be taken into account. This section summarizes the

results of the shape factor between two fin elements. The procedure used

is Hottel's crossed string method which is valid for infinitely long elements

that are generated by a straight line moving parallel to itself. The finite

length of the tube elements to accounted for by multiplying Hottel's result

by a weighting factor.

From Hottel's crossed string method (see Fig. 5 ) the shape factor

between two infinitely long tubes is:

FI-2 = /2 _ Y + R2 cos _)2 i _ (2L cos- + - _2 " _) (D. 14)

where

0 .n
t = one half the fin thickness at its root.

R2 = outside radius of the tube

L = one-half the distance between tube centers

y = _ - (01 + _l)

01tan1(t )= 2L- R2 cos

01 = c°s- I (R 2 sint _I )

The weighting factor for two tube elements of width AZ located at

ZI, Z2 (see Fig. 5 ) is
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Y

AZ

Fig. 5 ShapeFactor BetweenAdjacent Tubes



where

WF=
B2

2
Cos

1 1
BdB = _ (82-81 ) + _ (sin 2B 2 - sin 2BI)

tan -I [ Z2 - AZ/2 - Z I ]
B I

= b 2 (L-R2) ]

157

(D.15)

B2 = tan-I [ Z2 +AZ/2 - Zl]2(L_R2 )

The shape factor between tube element is now

WF

SSl-2 = _7_/2FI-2
(D.16)

where the valve for FI_ 2 is given by Eq. D.14.
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